Synthesis, Characterization and Oxygen Adsorption Properties of Substituted Aluminophosphate (AlPO4-5, AFI) Zeolites

161946-Thumbnail Image.png
Description
The objective of this research was to develop Aluminophosphate-five (AlPO4-5, AFI) zeolite adsorbents for efficient oxygen removal from a process stream to support an on-going Department of Energy (DOE) project on solar energy storage. A molecular simulation study predicted that

The objective of this research was to develop Aluminophosphate-five (AlPO4-5, AFI) zeolite adsorbents for efficient oxygen removal from a process stream to support an on-going Department of Energy (DOE) project on solar energy storage. A molecular simulation study predicted that substituted AlPO4-5 zeolite can adsorb O2 through a weak chemical bond at ambient temperature. Substituted AlPO4-5 zeolite was successfully synthesized via hydrothermal crystallization by following carefully designed procedures to tailor the zeolite for efficient O2 adsorption. Synthesized AlPO4-5 in this work included Sn/AlPO-5, Mo/AlPO-5, Pd/AlPO-5, Si/AlPO-5, Mn/AlPO-5, Ce/AlPO-5, Fe/AlPO-5, CuCe/AlPO-5, and MnSnSi/AlPO-5. While not all zeolite samples synthesized were fully characterized, selected zeolite samples were characterized by powder x-ray diffraction (XRD) for crystal structure confirmation and phase identification, and nitrogen adsorption for their pore textural properties. The Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution were between 172 m2 /g - 306 m2 /g and 6Å - 9Å, respectively, for most of the zeolites synthesized. Samples of great interest to this project such as Sn/AlPO-5, Mo/AlPO-5 and MnSnSi/AlPO-5 were also characterized using x-ray photoelectron spectroscopy (XPS) and energy-dispersive x-ray spectroscopy (EDS) for elemental analysis, scanning electron microscopy (SEM) for morphology and particle size estimation, and electron paramagnetic resonance (EPR) for nature of adsorbed oxygen. Oxygen and nitrogen adsorption experiments were carried out in a 3-Flex adsorption apparatus (Micrometrics) at various temperatures (primarily at 25℃) to determine the adsorption properties of these zeolite samples as potential adsorbents for oxygen/nitrogen separation. Experiments showed that some of the zeolite samples adsorb little-to-no oxygen and nitrogen at 25℃, while other zeolites such as Sn/AlPO-5, Mo/AlPO-5, and MnSnSi/AlPO-5 adsorb decent but inconsistent amounts of oxygen with the highest observed values of about 0.47 mmol/ g, 0.56 mmol/g, and 0.84 mmol/ g respectively. The inconsistency in adsorption is currently attributed to non-uniform doping of the zeolites, and these findings validate that some substituted AlPO4-5 zeolites are promising adsorbents. However, more investigations are needed to verify the causes of this inconsistency to develop a successful AlPO4-5 zeolite-based adsorbent for oxygen/nitrogen separation.
Date Created
2021
Agent

Gasification of Municipal Solid Waste for Hydrogen Production

Description
A Study of the gasification of municipal solid waste (MSW) for hydrogen production was completed through research and statistical design of experiment. The study was done for general syngas production with conditions of high temperature and pressure. Waste samples from

A Study of the gasification of municipal solid waste (MSW) for hydrogen production was completed through research and statistical design of experiment. The study was done for general syngas production with conditions of high temperature and pressure. Waste samples from kitchen waste including rice, avocado, and egg shells were used. Dry orange blossom tree leaves were included and a very minimal fraction of used paper and Styrofoam. One of the components of the syngas predicted was hydrogen, but this study does not discuss techniques for the separation of the hydrogen from the syngas. A few suggestions, however, such as the use of gas chromatography and membranes are made for the study of the syngas and separation of the hydrogen from the syngas. A three level, three factors-half factorial design was used to analyze the impact of pressure, residence time and temperature on the gasification of MSW through a hydrothermal gasification approach. A series 4590 micro stirred reactor of 100mL was used to gasify MSW, but first, it was established through a TGA approach that the waste was about 5% moisture content and 55% organic content (OC). The TGA device used was the TG 209 F1 Libra. Results of the gasification indicated that the most important factor in the gasification of MSW is temperature, followed by residence time and that the syngas yield increases with a decreasing pressure of the system. A thermodynamic model relating the three factors and the syngas yield was developed.
Date Created
2019-05
Agent