Structural-Functional Studies on PSI-IsiA Super-complex in Synechocystis sp. PCC 6803
- Author (aut): Li, Jin
- Thesis advisor (ths): Mazor, Yuval
- Committee member: Chiu, Po-Lin
- Committee member: Mills, Jeremy
- Publisher (pbl): Arizona State University
Model organisms like Homo sapiens, Drosophila, and E. coli, while useful to various fields of study, present a problem to the scientific community: many other organisms’ proteins, metabolic processes, and biochemical mechanisms are not as well understood by comparison. Pocillopora damicornis (Pdam), like many other coral organisms, faces environmental stresses and threats to its survival in ocean ecosystems with limited understanding of its biochemical mechanisms, making it difficult to help preserve. However, upon analyzing the symbiotic relationship of Pdam and photosynthetic algae, it was reasoned that the coral organism is capable of detecting light. Following up with results of prior bioinformatics analysis courtesy of Kumar, L., Klein-Seetharaman, J., Et. Al, it was proposed that light sensitive proteins in corals are the following four candidates: 2270, 12246, 629, 19775. If chromophores form and their opsin shifts can be visualized in the case in any of the coral candidate opsin genes, it supports the hypothesis that the proteins are indeed a light sensitive opsin protein. If a light sensitive opsin protein is identified, it provides a direction by which efforts can be directed towards to understand corals at the biochemical level for their preservation in the face of unprecedented threats to sustainability.
Alzheimer’s disease (AD) is a common neurodegenerative disorder affecting approximately 10% of people aged 65 and up and 30-50% over 85. In pathological AD representations, a way to recognize early onset AD is the increased levels of pro-NGF in BFCNs that come from the downregulation of NGF with age. Pro-NGF has a higher affinity for p75NTR, which binds and participates in the pro-NGF-p75NTR-sortilin complex sequentially cleaved by α- and γ-secretase. Pro-NGF triggers apoptosis through the cleavage of the intracellular membrane by γ-secretase. Since γ-secretase physically cleaves off the intramembrane portion that promotes TNF- and Fas-dependent apoptotic signaling pathways, it has a crucial role in AD and must be better understood. This research aims to understand better and visualize γ-secretase and its actions, specifically with its interactions with the substrate p75NTR in the RIP process. To analyze γ-secretase function, the proteins must be produced and analyzed through the protein expression protocol. During protein production, DNA, cell concentrations, and optical density measurements were difficult to produce due to the incompetency of e. coli cells (DH5α), contamination of the Sf9 insect cell culture, and decreased viability of aged insect cells. We identified the problems and improved the conditions for future project development.