Cryo-electron Microscopy Enables Structural Studies of Protein Complexes Relevant to Neurodegeneration

171774-Thumbnail Image.png
Description
The understanding of protein functions in vivo is very important since the protein is the building block of a cell. Cryogenic electron microscopy (cryo-EM) is capable of visualizing protein samples in their near-native states in high-resolution details. Cryo-EM

The understanding of protein functions in vivo is very important since the protein is the building block of a cell. Cryogenic electron microscopy (cryo-EM) is capable of visualizing protein samples in their near-native states in high-resolution details. Cryo-EM enables the visualization of biomolecular structures at multiscale ranging from a cellular structure to an atomic structure of protein subunit.Neurodegenerative diseases, like Alzheimer’s disease and frontotemporal dementia, have multiple dysregulated signaling pathways. In my doctoral studies, I investigated two protein complexes relevant to these disorders: one is the proNGF- p75 neurotrophin receptor (p75NTR)- sortilin neurotrophin complex and the other is the p97R155H mutant complex. The neurotrophins are a family of soluble basic growth factors involved in the development, maintenance, and proliferation of neurons in the central nervous system (CNS) and peripheral nervous system (PNS). The ligand for the neuronal receptors dictates the fate of the neuronal cells. My studies focused on understanding the binding interfaces between the proteins in the proNGF-p75NTR-sortilin neuronal apoptotic complex. I have performed the biochemical characterization of the complex to understand how the complex formation occurs. Single amino-acid mutation of R155H on the N-domain of p97 is known to be the prevalent mutation in 40% patients suffering from neurodegenerative disease. The p97R155H mutant exhibits abnormal ATPase activity and cofactor dysregulation. I pursued biochemical characterization in combination with single-particle cryo-EM to explore the interaction of p97R155H mutant with its cofactor p47 and determined the full-length structures of the p97R155H-p47 assemblies for the first time. About 40% p97R155H organizes into higher order dodecamers, which lacks nucleotide binding, does not bind to p47, and closely resembles the structure of p97 bound with an adenosine triphosphate (ATP)-competitive inhibitor, CB-5083, suggesting an inactive state of the p97R155H mutant. The structures also revealed conformational changes of the arginine fingers which might contribute to the elevated p97R155H ATPase activity. Because the D1-D2 domain communication is important in regulating the ATPase function, I further studied the functions of the conserved L464 residue on the D1-D2 linker using mutagenesis and single-particle cryo-EM. The biochemical and structural results suggested the torsional constraint of the D1-D2 linker likely modulates the D2 ATPase activity. Our studies thus contributed to develop deeper knowledge of the intricate cellular mechanisms and the proteins affected in disease pathways.
Date Created
2022
Agent