Avian Magnetoreception: Where Quantum Physics and Biology Collide

Description

The 1970’s was an exciting time for those interested in avian navigation and magnetoreception. In the mid 1970’s, it had been scientifically proven that birds utilized the Earth’s magnetic fields as a means for orientation. However, while scientists now knew

The 1970’s was an exciting time for those interested in avian navigation and magnetoreception. In the mid 1970’s, it had been scientifically proven that birds utilized the Earth’s magnetic fields as a means for orientation. However, while scientists now knew that birds could detect geomagnetic fields, a major question still remained: how? Several years later, physicist Klaus Schulten would bring the world much closer to an answer with the introduction of the radical pair model. With an extremely firm grasp of quantum mechanics, Schulten was able to make an amazing connection between the magnetically sensitive “radical pairs” and magnetic sensing in organisms (such as birds). The goal of this thesis is to explore this intersection of quantum mechanics and biology first illuminated by Schulten, through providing an in-depth explanation of the radical pair model itself, the quantum mechanical concepts that allow it to exist, the possible biological structures involved, and a small exploration of where the theory stands today, all to better understand the fascinating phenomenon of avian magnetoreception.

Date Created
2022-05
Agent

Experimental Characterization of CMCs for Data-Driven Microstructure Assessment

165864-Thumbnail Image.png
Description
This paper focuses on the sample preparation and material characterization of a carbon fiber-reinforced silicon carbonitride (C/SiNC) ceramic matrix composite (CMC) system. C/SiNC CMC systems have desirable mechanical and thermal properties which makes them suitable for a wide variety of

This paper focuses on the sample preparation and material characterization of a carbon fiber-reinforced silicon carbonitride (C/SiNC) ceramic matrix composite (CMC) system. C/SiNC CMC systems have desirable mechanical and thermal properties which makes them suitable for a wide variety of applications ranging from aerospace to power generation. CMCs are highly susceptible to manufacturing-induced defects, and the effect of these defects on the microscale damage behavior of the microstructure of these CMCs has not been researched. In order to perform the material characterization study, samples of the C/SiNC CMC system had to be prepared through a meticulous polishing process. After the samples were prepared, micrographs of the intratow region of the samples were captured using a confocal microscope. Feature extraction were subsequently performed on the micrographs that were captured. Different image processing techniques were applied to the captured micrographs to quantify the features that were identified.
Date Created
2022-05
Agent

Founders Lab Thesis: Patchwork Apparel

165717-Thumbnail Image.png
Description
Our group examined the low rate of clothing utilization in the fashion industry. Fast fashion has contributed to this low rate of utilization, as well as the high amounts of textiles that end up in landfills. Our startup, Patchwork Apparel,

Our group examined the low rate of clothing utilization in the fashion industry. Fast fashion has contributed to this low rate of utilization, as well as the high amounts of textiles that end up in landfills. Our startup, Patchwork Apparel, was designed to address this problem. Our clothes were made with fabric scraps or donated textiles that would otherwise end up in landfills. The mission of our business was to develop trendy and sustainable apparel that helped to eliminate textile waste while staying on brand with current fashion trends.
Date Created
2022-05
Agent

Investigation Into the Alloying of Fe1-xNixCl2 2D Magnets

165027-Thumbnail Image.png
Description

The recent discoveries of 2D van der Waals (vdW) materials have led to the realization of 2D magnetic crystals. Previously debated and thought impossible, transition metal halides (TMH) have given rise to layer dependent magnetism. Using these TMH as a

The recent discoveries of 2D van der Waals (vdW) materials have led to the realization of 2D magnetic crystals. Previously debated and thought impossible, transition metal halides (TMH) have given rise to layer dependent magnetism. Using these TMH as a basis, an alloy composing of Fe1-xNixCl2 (where 0 ≤ x ≤ 1) was grown using chemical vapor transport. The intrigue for this alloy composition stems from the interest in spin canting and magnet moment behavior since NiCl2 has in-plane ferromagnetism whereas FeCl2 has out-of-plane ferromagnetism. While in its infancy, this project lays out a foundation to fully develop and characterize this TMH via cationic alloying. To study the magnetic properties of this alloy system, Vibrating Sample Magnetometry was employed extensively to measure the magnetism as a function of temperature as well as applied magnetic field. Future work with use a combination of X-Ray Diffraction, Raman, Scanning Electron Microscopy, and Energy-Dispersive X-Ray Spectroscopy Mapping to verify homogeneous alloying rather than phase separation. Additionally, ellipsometry will be used with Kramer-Kronig relations to extract the dielectric constant from Fe1-xNixCl2. This work lays the foundation for future, fruitful work to prepare this vdW cationic alloy for eventual device applications.

Date Created
2022-05
Agent

Lighter Concrete: An In-Depth Analysis of the Effects of Recycled Plastic Aggregate in Composite Concrete

147600-Thumbnail Image.png
Description

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could create a more lightweight concrete than that made using the<br/>typical gravel aggregate for concrete, while still maintaining the physical strength that concrete is<br/>known for. This will be accomplished by varying the amount of plastic in the aggregate. If<br/>successful, this project would allow concrete to be used in applications it would typically not be<br/>suitable for.<br/>After testing the strength of the concrete specimens with varying fills of plastic aggregate<br/>it was determined that the control group experienced an average peak stress of 2089 psi, the<br/>16.67% plastic group experienced an average peak stress of 2649 psi, the 33.3% plastic group<br/>experienced an average peak stress of 1852 psi, and the 50% plastic group experienced an<br/>average stress of 924.5 psi. The average time to reach the peak stress was found to be 12 minutes<br/>and 24 seconds in the control group, 15 minutes and 34 seconds in the 16.7% plastic group, 9<br/>minutes and 45 seconds in the 33.3% plastic group, and 10 minutes and 58 seconds in the 50%<br/>plastic group. Taking the average of the normalized weights of the cylindrical samples it was<br/>determined that the control group weighed 14.773 oz/in, the 16.7% plastic group weighed 15<br/>oz/in, the 33.3% plastic group weighed 14.573 oz/in, and the 50% plastic group weighed 12.959<br/>oz/in. Based on these results it can be concluded that a small addition of plastic aggregate can be<br/>beneficial in creating a lighter, stronger concrete. The results show that a 16.7% fill ratio of<br/>plastic to rock aggregate can increase the failure time and the peak strength of a composite<br/>concrete. Overall, the experiment was successful in analyzing the effects of recycled plastic<br/>aggregate in composite concrete.<br/>Some possible future studies related to this subject material are adding aluminum to the<br/>concrete, having better molds, looking for the right consistency in each mixture, mixing for each<br/>mold individually, and performing other tests on the samples.

Date Created
2021-05
Agent

3D Printed Device for Mechanical Fatigue Testing and Analysis of Li-ion Batteries and Electrodes

147689-Thumbnail Image.png
Description

In the last several years, there has been interest in the development of flexible batteries as a substitute for traditional Li-ion batteries. Flexible batteries can fold, bend, and twist; studies have shown that mechanical stresses and fatigue may decrease battery

In the last several years, there has been interest in the development of flexible batteries as a substitute for traditional Li-ion batteries. Flexible batteries can fold, bend, and twist; studies have shown that mechanical stresses and fatigue may decrease battery performance and cause defects. In this paper, the viability of producing a mechanical fatigue-testing device from 3D printed and other off-the-shelf components was explored. The device was made using a servomotor and LCD screen controlled by a programmed Arduino board, and successfully met the expectations to be cheap, easily reproducible, versatile, and applicable to the testing of battery components. In a proof-of-concept test, the device was used to perform repeated folding tests on lithium cobalt oxide cathodes in different configurations, which were then characterized using a laser microscope. 3D topographical renderings suggested that bending at acute angles induces defects on the surface of the electrode where the electrode is creased. In future work, the device will be used to further explore the effect of mechanical fatigue on Li-ion battery components.

Date Created
2021-05
Agent

Exploring Synthesis Strategies Towards Spherical Cr2GaC

147698-Thumbnail Image.png
Description

MAX phases are layered hexagonal early transition metal carbides, sometimes nitrides, where M is an early transition metal, A is an A group element, most prominently groups 13 or 14, and X is either carbon or nitrogen.1 They are gaining

MAX phases are layered hexagonal early transition metal carbides, sometimes nitrides, where M is an early transition metal, A is an A group element, most prominently groups 13 or 14, and X is either carbon or nitrogen.1 They are gaining a lot of attention because of their unusual properties. Particularly, their hardness, chemical stability at room temperature, and high melting points. These properties provide a material that is viable for a wide range of demanding applications.2,3 MAX phases display a combination of both ceramic and metallic characteristics. Furthermore, they also serve as a precursor for two-dimensional MXenes.4,5<br/>Generally, bulk synthesis of MAX phases is done through traditional solid state synthesis techniques. For example, three solid state synthesis techniques include solid state method, hot pressing and arc melting and annealing. During solid state method, the powder precursors are preheated between 350 and 400°C, allowing for decomposition of starting reagents and removal of volatile products leaving only the oxides. At this point the germination phase has completed, and the crystal growth phase begins. Under the effect of a concentration gradient and very high temperatures, cations migrate, forming well-ordered layers. Slow cooling rates are used in order to ensure crystallinity of the product.6 The second method, hot pressing, involves the mixing of powder precursors thoroughly and then cold pressed into a green body – a ceramic body powder pre-sintering. They are then heated under vacuum and often high pressure in order to form the product. Two variants of hot-pressing exits: reactive hot pressing, where the pressure during the reaction will vary throughout the reaction, and isostatic hot pressing, where the pressure is held constant throughout the entire reaction.7 Another solid-state technique is arc melting and annealing. During arc melting, alternating current is applied to the electrode inside an inert reactor, which is arranged as to generate an arc discharge. The heat produced by arcing causes rapid melting of the samples.8 While these methods are most common, they are not always viable due to the specialized equipment required in order to achieve the high temperature and pressure conditions. Furthermore, these specific techniques don’t allow for high control over particle size and morphology. <br/>Because of this, alternative, non-conventional synthesis techniques have been developed involving more readily available tube furnaces and microwaves, which lack the extreme pressures instead opting for ambient conditions.9 Sol-gel techniques have been developed by the group of Christina Birkel, and have successfully produced MAX phases through calcination of homogeneous citric acid-based gel-precursors. Some advantages of using these gel-precursors include shorter diffusion paths, and faster mass transport, thus, resulting in lower reaction temperatures and shorter reaction times. Ultimately, this allows for control over particle morphology and size.10<br/>The focus of this work is to discover optimal synthesis conditions to create spherical Cr2GaC. Spherical MAX phases have been briefly explored in existing literature using polymer-based hollow microsphere templates.10 These polymer microspheres have been used to synthesize spherical metal oxides. This is achieved by heating the metal oxide precursors which adhere to the spheres, then by thermal treatment, the template is then removed.11 <br/>Two different microsphere templates will be explored to study the advantages and disadvantages of different size distributions and surface conditions of the spheres. Furthermore, reaction temperature, reaction time, citric acid equivalents, and gel to microsphere ratio will be altered to determine optimal synthesis parameters for depositing Cr2GaC onto spherical templates. Cr2GaC serves as a model compound because it has been successfully synthesized through sol-gel chemistry in the past.10 This phase will be prepared through non-conventional sol-gel chemistry, with various heating profiles, both furnace and microwave, and will be characterized through X-ray diffraction (XRD), and Rietveld refinement. Further, the morphology and atomic composition will be analyzed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS).

Date Created
2021-05
Agent

Science Performance, Science Competence, and Science Identity Recognition in Engineering

147785-Thumbnail Image.png
Description

This is a study that demonstrates my growing understanding of the factors that influence Latinx engineering students’ sense of belonging in engineering. I conducted a literature review to help me gain perspectives from prior research on this topic. I wanted

This is a study that demonstrates my growing understanding of the factors that influence Latinx engineering students’ sense of belonging in engineering. I conducted a literature review to help me gain perspectives from prior research on this topic. I wanted to investigate Latinx engineering students’ sense of belonging at Arizona State University. This interest was fueled by my own perspectives as an undergraduate first-generation Latina student. I was inspired by the Social Identity Development Theory described in “Becoming La Ingenieria” by Sarah L Rodriguez (2019). I found that science performance, science competence, and science identity recognition were important factors in engineering for Latinx students to thrive and succeed in their chosen major--engineering. Through the literature review, I found that Latinx engineering students need family support, faculty and staff to look up to, and ways to create authentic connections with near peers and professions. Student organization involvement such as in the Society of Hispanic Professional Engineers student chapter can help Latinx students grow their intersectional identities related to their identification as Latinx and as an engineer which then helped strengthen their sense of belonging in engineering. <br/><br/>I conducted a survey of Latinx engineering students at Arizona State University to better understand their perceptions on issues related to their sense of belonging and underlying factors of competence, recognition, and performance in engineering. However, due to the low participation, possibly due to the ongoing COVID-19 pandemic, I could not conduct statistical analyses that could lead inferences to the broad population of Latinx engineering students at ASU. <br/><br/>It is important to continue to create structures within university engineering programs and professional engineering societies to offer formal near-peer and professional mentorship of Latinx students. The integration of families from recruitment to graduation of Latinx engineering students may help build a more supportive structure for students to succeed. Research on the ways in which university faculty, staff, and near-peers can better support Latinx students will be essential to build classroom environments that help all students build a sense of belonging in engineering.

Date Created
2021-05
Agent

TEM Image Simulations of Structural Dynamics on CeO2-supported Pt Catalysts

147871-Thumbnail Image.png
Description

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design principles may be derived to enhance the efficiency of this catalyst. Developing static models of a 2 nm Pt nanoparticle supported on CeO2 and simulating TEM images of the models was found to create similar images to those seen in experimental TEM time-resolved series of the system. Rotations of static models on a ceria support provides a way to understand the experimental samples in three dimensions, which is difficult in two dimensional TEM images. This project expands the possibilities of interpreting TEM images of catalytic systems.

Date Created
2021-05
Agent

Soiled: An Environmental Podcast

Description

Soiled: An Environmental Podcast is a six episode series that addresses common environmental topics and debunks myths that surround those topics.

Date Created
2021-05
Agent