Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an…
Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the [superscript 13]C, [superscript 15]N, [superscript 2]H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, H[subscript N], CO, C[subscript α], and C[subscript β] chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T[subscript 1Z] and T[subscript 2] relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several…
The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662–683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649–705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM).
Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors.…
Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Background:
Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe…
Background:
Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency.
Results:
77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions.
Conclusions:
Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Serial crystallography (SX) is a relatively new structural biology technique that collects X-ray diffraction data from microcrystals via femtosecond pulses produced by an X-ray free electron laser (X-FEL) or by synchrotron radiation, allowing…
Serial crystallography (SX) is a relatively new structural biology technique that collects X-ray diffraction data from microcrystals via femtosecond pulses produced by an X-ray free electron laser (X-FEL) or by synchrotron radiation, allowing for challenging protein structures to be solved from microcrystals at room temperature. Because of the youth of this technique, method development is necessary for it to achieve its full potential.
Most serial crystallography experiments have relied on delivering sample in the mother liquor focused into a stream by compressed gas. This liquid stream moves at a fast rate, meaning that most of the valuable sample is wasted. For this reason, the liquid jet can require 10-100 milligrams of sample for a complete data set. Agarose has been developed as a slow moving microcrystal carrier to decrease sample consumption and waste. The agarose jet provides low background, no Debye-Sherrer rings, is compatible for sample delivery in vacuum environments, and is compatible with a wide variety of crystal systems. Additionally, poly(ethylene oxide) which is amenable for data collection in atmosphere has been developed for synchrotron experiments. Thus this work allows sample limited proteins of difficult to crystallize systems to be investigated by serial crystallography.
Time-resolved serial X-ray crystallography (TR-SX) studies have only been employed to study light-triggered reactions in photoactive systems. While these systems are very important, most proteins in Nature are not light-driven. However, fast mixing of two liquids, such as those containing enzyme protein crystals and substrates, immediately before being exposed to an X-ray beam would allow conformational changes and /or intermediates to be seen by diffraction. As a model, 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase (KDO8PS), has been developed for TR-SX. This enzyme initializes the first step of lipopolysaccharide synthesis by a net aldol condensation between arabinose-5-phosphate, phosphoenol pyruvate, and water. During this reaction, a short lived intermediate is formed and has been observed on a millisecond timescale using other methods. Thus KDO8PS is an ideal model protein for studying diffusion times into a crystal and short mixing times (<10 ms). For these experiments, microcrystals diffracting to high resolution have been developed and characterized.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Viral protein U (Vpu) is a type-III integral membrane protein encoded by the Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays vital roles in down-regulation of CD4 receptors in T cells and also in…
Viral protein U (Vpu) is a type-III integral membrane protein encoded by the Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays vital roles in down-regulation of CD4 receptors in T cells and also in the budding of virions. But, there remain key structure/function questions regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis and thus, it makes for an attractive target to study the structural attributes of this protein by elucidating a structural model with X-ray crystallography. This study describes a multi-pronged approach of heterologous over-expression of Vpu. The strategies of purification and biophysical/ biochemical characterization of the different versions of the protein to evaluate their potential for crystallization are also detailed. Furthermore, various strategies employed for the crystallization of Vpu by both in surfo and in cubo techniques, and the challenges faced towards the structural studies of this membrane protein by characterization with solution Nuclear magnetic resonance (NMR) spectroscopy are also described.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Accurate virus detection is important for diagnosis in a timely manner to facilitate rapid interventions and treatments. RNA viruses affect an extensive amount of the world’s population, particularly in tropical countries where emerging infectious agents often arise. Current diagnostic methods…
Accurate virus detection is important for diagnosis in a timely manner to facilitate rapid interventions and treatments. RNA viruses affect an extensive amount of the world’s population, particularly in tropical countries where emerging infectious agents often arise. Current diagnostic methods have three main problems: they are time consuming, typically not field-portable, and expensive. My research goal is to develop rapid, field-portable and cost sensitive diagnostic methods for RNA viruses. Herein, two different approaches to detect RNA viruses were proposed: Conjugated gold nanoparticles for detection of viral particles or virus-specific antibodies by monitoring changes in their optical properties, and Tentacle Probes coupled with qPCR for detection and differentiation of closely-related viral strains. The first approach was divided into two projects: the study and characterization of the gold nanoparticle-antibody system for detection of virus particles using dynamic light scattering (DLS) and UV-Vis spectrophotometry, and development of a detection method for antibodies using static light scattering (SLS) and antigen-conjugated gold nanoparticles. Bovine serum albumin (BSA) conjugated gold nanoparticles could successfully detect BSA-specific antibodies in vitro, and protein E from Dengue Virus serotype 2 conjugated gold nanoparticles could detect Dengue-specific antibodies, both in vitro and in serum samples. This method is more accurate than currently used detection methods such as dot blots. The second approach uses Tentacle Probes, which are modified molecular beacons, to detect with high specificity two different strains of Lymphocytic Choriomeningitis Virus (LCMV), Armstrong and Clone-13, which differ in only one nucleotide at the target sequence. We successfully designed and use Tentacle Probes for detection of both strains of LCMV, in vitro and in serum from infected mice. Moreover, detection of as little as 10% of Clone-13 strain was possible when diluted in 90% Armstrong strain. This approach enables the detection of different strains of virus even within a mixed quasispecies and may be important for improving intervention strategies for reducing disease. The detection methods provide rapid detection of viruses, including viral strains within mixed populations, and should enhance our ability in providing early responses to emerging infectious diseases due to RNA viruses including Zika or Dengue virus.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The Heliobacterial reaction center (HbRC) is generally regarded as the most primitive photosynthetic reaction center (RC) known. Even if the HbRC is structurally and functionally simple compared to higher plants, the mechanisms of energy transduction preceding, inside the core, and…
The Heliobacterial reaction center (HbRC) is generally regarded as the most primitive photosynthetic reaction center (RC) known. Even if the HbRC is structurally and functionally simple compared to higher plants, the mechanisms of energy transduction preceding, inside the core, and from the RC are not totally established. Elucidating these structures and mechanisms are paramount to determining where the HbRC is in the grand scheme of RC evolution. In this work, the function and properties of the solubilized cyt c553, PetJ, were investigated, as well as the role HbRC localized menaquinone plays in light-induced electron transfer, and the interaction of the Nif-specific ferredoxin FdxB with reaction center particles devoid of bound FA/FB proteins. In chapter 2, I successfully express and purify a soluble version of PetJ that functions as a temperature dependent electron donor to P800+. Recombinant PetJ retains the spectroscopic characteristics of membrane-bound PetJ. The kinetics were characteristic of a bimolecular reaction with a second order rate of 1.53 x 104 M-1s-1 at room temperature and a calculated activation energy of 91 kJ/mol. In chapter 4, I use reverse phase high-performance liquid chromatography (HPLC) to detect the light-induced generation of Menaquinol-9 (MQH2) in isolated heliobacterial membranes. This process is dependent on laser power, pH, temperature, and can be modified by the presence of the artificial electron acceptor benzyl viologen (BV) and the inhibitors azoxystrobin and terbutryn. The addition of the bc complex inhibitor azoxystrobin decreases the ratio of MQ to MQH2. This indicates competition between the HbRC and the bc complex, and hints toward a truncated cyclic electron flow pathway. In chapter 5, the Nif-Specific ferredoxin FdxB was recombinantly expressed and shown to oxidize the terminal cofactor in the HbRC, FX-, in a concentration-dependent manner. This work indicates the HbRC may be able to reduce a wide variety of electron acceptors that may be involved in specific metabolic processes.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by…
CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously shown to induce HIV-1 transcytosis-blocking antibodies in mice and rabbits. However, the induction of high-titer MPR specific antibodies with HIV-1 transcytosis blocking ability remains a challenge as the immuno-dominance of CTB overshadows the response to MPR. X-ray crystallography was used to investigate the structure of CTB-MPR with the goal of identifying potential solutions to improve the immune response of MPR. Various CTB-MPR variants were designed using different linkers connecting the two fusion proteins. The procedures for over-expression E. coli and purification have been optimized for each of the variants of CTB-MPR. The purity and oligomeric homogeneity of the fusion protein was demonstrated by electrophoresis, size-exclusion chromatography, dynamic light scattering, and immuno-blot analysis. Crystallization conditions for macroscopic and micro ano-crystals have been established for the different variants of the fusion protein. Diffraction patterns were collected by using both conventional and serial femto-second crystallography techniques. The two crystallography techniques showed very interesting differences in both the crystal packing and unit cell dimensions of the same CTB-MPR construct. Although information has been gathered on CTB-MPR, the intact structure of fusion protein was not solved as the MPR region showed only weak electron density or was cleaved during crystallization of macroscopic crystals. The MPR region is present in micro ano-crystals, but due to the severe limitation of the Free Electron Laser beamtime, only a partial data set was obtained and is insufficient for structure determination. However, the work of this thesis has established methods to purify large quantities of CTB-MPR and has established procedures to grow crystals for X-ray structure analysis. This has set the foundation for future structure determination experiments as well as immunization studies.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)