Formalizing Safety, Perception, and Mission Requirements for Testing and Planning in Autonomous Vehicles

161988-Thumbnail Image.png
Description
Autonomous Vehicles (AV) are inevitable entities in future mobility systems thatdemand safety and adaptability as two critical factors in replacing/assisting human drivers. Safety arises in defining, standardizing, quantifying, and monitoring requirements for all autonomous components. Adaptability, on the other hand, involves efficient handling

Autonomous Vehicles (AV) are inevitable entities in future mobility systems thatdemand safety and adaptability as two critical factors in replacing/assisting human drivers. Safety arises in defining, standardizing, quantifying, and monitoring requirements for all autonomous components. Adaptability, on the other hand, involves efficient handling of uncertainty and inconsistencies in models and data. First, I address safety by presenting a search-based test-case generation framework that can be used in training and testing deep-learning components of AV. Next, to address adaptability, I propose a framework based on multi-valued linear temporal logic syntax and semantics that allows autonomous agents to perform model-checking on systems with uncertainties. The search-based test-case generation framework provides safety assurance guarantees through formalizing and monitoring Responsibility Sensitive Safety (RSS) rules. I use the RSS rules in signal temporal logic as qualification specifications for monitoring and screening the quality of generated test-drive scenarios. Furthermore, to extend the existing temporal-based formal languages’ expressivity, I propose a new spatio-temporal perception logic that enables formalizing qualification specifications for perception systems. All-in-one, my test-generation framework can be used for reasoning about the quality of perception, prediction, and decision-making components in AV. Finally, my efforts resulted in publicly available software. One is an offline monitoring algorithm based on the proposed logic to reason about the quality of perception systems. The other is an optimal planner (model checker) that accepts mission specifications and model descriptions in the form of multi-valued logic and multi-valued sets, respectively. My monitoring framework is distributed with the publicly available S-TaLiRo and Sim-ATAV tools.
Date Created
2021
Agent

Robust Object Detection under Varying Illuminations and Distortions

158419-Thumbnail Image.png
Description
Object detection is an interesting computer vision area that is concerned with the detection of object instances belonging to specific classes of interest as well as the localization of these instances in images and/or videos. Object detection serves as a

Object detection is an interesting computer vision area that is concerned with the detection of object instances belonging to specific classes of interest as well as the localization of these instances in images and/or videos. Object detection serves as a vital module in many computer vision based applications. This work focuses on the development of object detection methods that exhibit increased robustness to varying illuminations and image quality. In this work, two methods for robust object detection are presented.

In the context of varying illumination, this work focuses on robust generic obstacle detection and collision warning in Advanced Driver Assistance Systems (ADAS) under varying illumination conditions. The highlight of the first method is the ability to detect all obstacles without prior knowledge and detect partially occluded obstacles including the obstacles that have not completely appeared in the frame (truncated obstacles). It is first shown that the angular distortion in the Inverse Perspective Mapping (IPM) domain belonging to obstacle edges varies as a function of their corresponding 2D location in the camera plane. This information is used to generate object proposals. A novel proposal assessment method based on fusing statistical properties from both the IPM image and the camera image to perform robust outlier elimination and false positive reduction is also proposed.

In the context of image quality, this work focuses on robust multiple-class object detection using deep neural networks for images with varying quality. The use of Generative Adversarial Networks (GANs) is proposed in a novel generative framework to generate features that provide robustness for object detection on reduced quality images. The proposed GAN-based Detection of Objects (GAN-DO) framework is not restricted to any particular architecture and can be generalized to several deep neural network (DNN) based architectures. The resulting deep neural network maintains the exact architecture as the selected baseline model without adding to the model parameter complexity or inference speed. Performance results provided using GAN-DO on object detection datasets establish an improved robustness to varying image quality and a higher object detection and classification accuracy compared to the existing approaches.
Date Created
2020
Agent

Transportation Techniques for Geometric Clustering

158291-Thumbnail Image.png
Description
This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power

This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power diagrams to solve different clustering problems. The OT formulation is based on the variational principle to differentiate hard cluster assignments, which was missing in the literature. This thesis shows multiple techniques to regularize and generalize OT to cope with various tasks including clustering, aligning, and interpolating distributional data. It also discusses the connections of the new formulation to other OT and clustering formulations to better understand their gaps and the means to close them. Finally, this thesis demonstrates the advantages of the proposed OT techniques in solving machine learning problems and their downstream applications in computer graphics, computer vision, and image processing.
Date Created
2020
Agent

BagStack Classification for Data Imbalance Problems with Application to Defect Detection and Labeling in Semiconductor Units

157531-Thumbnail Image.png
Description
Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The

Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements.

Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of defect detection and classification in semiconductor units is challenging due to different acceptable variations that the manufacturing process introduces. Other variations are also typically introduced when using optical inspection systems due to changes in lighting conditions and misalignment of the imaged units, which makes the defect detection process more challenging.

In this thesis, a BagStack classification framework is proposed, which makes use of stacking and bagging concepts to handle both variance and bias errors. The classifier is designed to handle the data imbalance and overfitting problems by adaptively transforming the

multi-class classification problem into multiple binary classification problems, applying a bagging approach to train a set of base learners for each specific problem, adaptively specifying the number of base learners assigned to each problem, adaptively specifying the number of samples to use from each class, applying a novel data-imbalance aware cross-validation technique to generate the meta-data while taking into account the data imbalance problem at the meta-data level and, finally, using a multi-response random forest regression classifier as a meta-classifier. The BagStack classifier makes use of multiple features to solve the defect classification problem. In order to detect defects, a locally adaptive statistical background modeling is proposed. The proposed BagStack classifier outperforms state-of-the-art image classification techniques on our dataset in terms of overall classification accuracy and average per-class classification accuracy. The proposed detection method achieves high performance on the considered dataset in terms of recall and precision.
Date Created
2019
Agent

Distortion Robust Biometric Recognition

156972-Thumbnail Image.png
Description
Information forensics and security have come a long way in just a few years thanks to the recent advances in biometric recognition. The main challenge remains a proper design of a biometric modality that can be resilient to unconstrained conditions,

Information forensics and security have come a long way in just a few years thanks to the recent advances in biometric recognition. The main challenge remains a proper design of a biometric modality that can be resilient to unconstrained conditions, such as quality distortions. This work presents a solution to face and ear recognition under unconstrained visual variations, with a main focus on recognition in the presence of blur, occlusion and additive noise distortions.

First, the dissertation addresses the problem of scene variations in the presence of blur, occlusion and additive noise distortions resulting from capture, processing and transmission. Despite their excellent performance, ’deep’ methods are susceptible to visual distortions, which significantly reduce their performance. Sparse representations, on the other hand, have shown huge potential capabilities in handling problems, such as occlusion and corruption. In this work, an augmented SRC (ASRC) framework is presented to improve the performance of the Spare Representation Classifier (SRC) in the presence of blur, additive noise and block occlusion, while preserving its robustness to scene dependent variations. Different feature types are considered in the performance evaluation including image raw pixels, HoG and deep learning VGG-Face. The proposed ASRC framework is shown to outperform the conventional SRC in terms of recognition accuracy, in addition to other existing sparse-based methods and blur invariant methods at medium to high levels of distortion, when particularly used with discriminative features.

In order to assess the quality of features in improving both the sparsity of the representation and the classification accuracy, a feature sparse coding and classification index (FSCCI) is proposed and used for feature ranking and selection within both the SRC and ASRC frameworks.

The second part of the dissertation presents a method for unconstrained ear recognition using deep learning features. The unconstrained ear recognition is performed using transfer learning with deep neural networks (DNNs) as a feature extractor followed by a shallow classifier. Data augmentation is used to improve the recognition performance by augmenting the training dataset with image transformations. The recognition performance of the feature extraction models is compared with an ensemble of fine-tuned networks. The results show that, in the case where long training time is not desirable or a large amount of data is not available, the features from pre-trained DNNs can be used with a shallow classifier to give a comparable recognition accuracy to the fine-tuned networks.
Date Created
2018
Agent

Tree-Based Deep Mixture of Experts with Applications to Visual Saliency Prediction and Quality Robust Visual Recognition

156747-Thumbnail Image.png
Description
Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions.

Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use due to difficulty in training diverse experts and high computational requirements. This work presents modifications of the mixture of experts formulation that use domain knowledge to improve training, and incorporate parameter sharing among experts to reduce computational requirements.

First, this work presents an application of mixture of experts models for quality robust visual recognition. First it is shown that human subjects outperform deep neural networks on classification of distorted images, and then propose a model, MixQualNet, that is more robust to distortions. The proposed model consists of ``experts'' that are trained on a particular type of image distortion. The final output of the model is a weighted sum of the expert models, where the weights are determined by a separate gating network. The proposed model also incorporates weight sharing to reduce the number of parameters, as well as increase performance.



Second, an application of mixture of experts to predict visual saliency is presented. A computational saliency model attempts to predict where humans will look in an image. In the proposed model, each expert network is trained to predict saliency for a set of closely related images. The final saliency map is computed as a weighted mixture of the expert networks' outputs, with weights determined by a separate gating network. The proposed model achieves better performance than several other visual saliency models and a baseline non-mixture model.

Finally, this work introduces a saliency model that is a weighted mixture of models trained for different levels of saliency. Levels of saliency include high saliency, which corresponds to regions where almost all subjects look, and low saliency, which corresponds to regions where some, but not all subjects look. The weighted mixture shows improved performance compared with baseline models because of the diversity of the individual model predictions.
Date Created
2018
Agent

Visual Quality Assessment and Blur Detection Based on the Transform of Gradient Magnitudes

156384-Thumbnail Image.png
Description
Digital imaging and image processing technologies have revolutionized the way in which

we capture, store, receive, view, utilize, and share images. In image-based applications,

through different processing stages (e.g., acquisition, compression, and transmission), images

are subjected to different types of distortions which degrade

Digital imaging and image processing technologies have revolutionized the way in which

we capture, store, receive, view, utilize, and share images. In image-based applications,

through different processing stages (e.g., acquisition, compression, and transmission), images

are subjected to different types of distortions which degrade their visual quality. Image

Quality Assessment (IQA) attempts to use computational models to automatically evaluate

and estimate the image quality in accordance with subjective evaluations. Moreover, with

the fast development of computer vision techniques, it is important in practice to extract

and understand the information contained in blurred images or regions.

The work in this dissertation focuses on reduced-reference visual quality assessment of

images and textures, as well as perceptual-based spatially-varying blur detection.

A training-free low-cost Reduced-Reference IQA (RRIQA) method is proposed. The

proposed method requires a very small number of reduced-reference (RR) features. Extensive

experiments performed on different benchmark databases demonstrate that the proposed

RRIQA method, delivers highly competitive performance as compared with the

state-of-the-art RRIQA models for both natural and texture images.

In the context of texture, the effect of texture granularity on the quality of synthesized

textures is studied. Moreover, two RR objective visual quality assessment methods that

quantify the perceived quality of synthesized textures are proposed. Performance evaluations

on two synthesized texture databases demonstrate that the proposed RR metrics outperforms

full-reference (FR), no-reference (NR), and RR state-of-the-art quality metrics in

predicting the perceived visual quality of the synthesized textures.

Last but not least, an effective approach to address the spatially-varying blur detection

problem from a single image without requiring any knowledge about the blur type, level,

or camera settings is proposed. The evaluations of the proposed approach on a diverse

sets of blurry images with different blur types, levels, and content demonstrate that the

proposed algorithm performs favorably against the state-of-the-art methods qualitatively

and quantitatively.
Date Created
2018
Agent

The Effect of Applying 2D Enhancement Algorithms on 3D Video Content

128281-Thumbnail Image.png
Description

Enhancement algorithms are typically applied to video content to increase their appeal to viewers. Such algorithms are readily available in the literature and are already widely applied in, for example, commercially available TVs. On the contrary, not much research has

Enhancement algorithms are typically applied to video content to increase their appeal to viewers. Such algorithms are readily available in the literature and are already widely applied in, for example, commercially available TVs. On the contrary, not much research has been done on enhancing stereoscopic 3D video content. In this paper, we present research focused on the effect of applying enhancement algorithms used for 2D content on 3D side-by-side content. We evaluate both offline enhancement of video content based on proprietary enhancement algorithms and real-time enhancement in the TVs. This is done using stereoscopic TVs with active shutter glasses, viewed both in their 2D and 3D viewing mode. The results of this research show that 2D enhancement algorithms are a viable first approach to enhance 3D content. In addition to video quality degradation due to the loss of spatial resolution as a consequence of the 3D video format, brightness reduction inherent to polarized or shutter glasses similarly degrades video quality. We illustrate the benefit of providing brightness enhancement for stereoscopic displays.

Date Created
2014-06-19
Agent

Locally Adaptive Stereo Vision Based 3D Visual Reconstruction

155540-Thumbnail Image.png
Description
Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive

Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes.





Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo vision based, in-line ball height and coplanarity inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement. The imaging setup and calibration, ball height estimation and substrate coplanarity calculation are presented with novel stereo vision methods. The results of the proposed method are evaluated in a measurement capability analysis (MCA) procedure and compared with the ground-truth obtained by an existing laser scanning tool and an existing confocal inspection tool. The proposed system outperforms existing inspection tools in terms of accuracy and stability.



In a rectified stereo vision system, stereo matching methods can be categorized into global methods and local methods. Local stereo methods are more suitable for real-time processing purposes with competitive accuracy as compared with global methods. This work proposes a stereo matching method based on sparse locally adaptive cost aggregation. In order to reduce outlier disparity values that correspond to mis-matches, a novel sparse disparity subset selection method is proposed by assigning a significance status to candidate disparity values, and selecting the significant disparity values adaptively. An adaptive guided filtering method using the disparity subset for refined cost aggregation and disparity calculation is demonstrated. The proposed stereo matching algorithm is tested on the Middlebury and the KITTI stereo evaluation benchmark images. A performance analysis of the proposed method in terms of the I0 norm of the disparity subset is presented to demonstrate the achieved efficiency and accuracy.
Date Created
2017
Agent

Low Complexity Optical Flow Using Neighbor-Guided Semi-Global Matching

155477-Thumbnail Image.png
Description
Many real-time vision applications require accurate estimation of optical flow. This problem is quite challenging due to extremely high computation and memory requirements. This thesis focuses on designing low complexity dense optical flow algorithms.

First, a new method for optical flow

Many real-time vision applications require accurate estimation of optical flow. This problem is quite challenging due to extremely high computation and memory requirements. This thesis focuses on designing low complexity dense optical flow algorithms.

First, a new method for optical flow that is based on Semi-Global Matching (SGM), a popular dynamic programming algorithm for stereo vision, is presented. In SGM, the disparity of each pixel is calculated by aggregating local matching costs over the entire image to resolve local ambiguity in texture-less and occluded regions. The proposed method, Neighbor-Guided Semi-Global Matching (NG-fSGM) achieves significantly less complexity compared to SGM, by 1) operating on a subset of the search space that has been aggressively pruned based on neighboring pixels’ information, 2) using a simple cost aggregation function, 3) approximating aggregated cost array and embedding pixel-wise matching cost computation and flow computation in aggregation. Evaluation on the Middlebury benchmark suite showed that, compared to a prior SGM extension for optical flow, the proposed basic NG-fSGM provides robust optical flow with 0.53% accuracy improvement, 40x reduction in number of operations and 6x reduction in memory size. To further reduce the complexity, sparse-to-dense flow estimation method is proposed. The number of operations and memory size are reduced by 68% and 47%, respectively, with only 0.42% accuracy degradation, compared to the basic NG-fSGM.

A parallel block-based version of NG-fSGM is also proposed. The image is divided into overlapping blocks and the blocks are processed in parallel to improve throughput, latency and power efficiency. To minimize the amount of overlap among blocks with minimal effect on the accuracy, temporal information is used to estimate a flow map that guides flow vector selections for pixels along block boundaries. The proposed block-based NG-fSGM achieves significant reduction in complexity with only 0.51% accuracy degradation compared to the basic NG-fSGM.
Date Created
2017
Agent