Electronic and optical properties of Si-Ge-Sn alloys

150432-Thumbnail Image.png
Description
In this thesis a new method based on the Tight-Binding Linear Muffin Tin Orbital (TB-LMTO) formalism and the Quasiparticle Self-consistent GW (QSGW) approximation is proposed. The method is capable of generating accurate electronic bands structure of large supercells necessary to

In this thesis a new method based on the Tight-Binding Linear Muffin Tin Orbital (TB-LMTO) formalism and the Quasiparticle Self-consistent GW (QSGW) approximation is proposed. The method is capable of generating accurate electronic bands structure of large supercells necessary to model alloys structures. The strategy consist in building simple and small hamiltonian from linear Muffin-tin-orbitals (LMTO). Parameters in this hamiltonian are then used to fit the difference in QSGW self-energies and LDA exchange-correlation potentials. The parameter are assumed to transfer to new environments --- a procedure we check carefully by comparing our predicted band to QSGW bands for small supercells. The method possess both the accuracy of the QSGW approximation, (which is the most reliable way to determine energy bands accurately, and yet too expensive for the large supercells required here), and the efficiency of the TB-LMTO method. The accurate and highly efficient hamiltonian is used to predict the electronic and optical transitions of Si1-xGex alloys and SnxSiyGe1-x-y alloys. The goal is to engineer direct band gap material compatible with the silicon technology. The results obtained are compared to available experimental data.
Date Created
2011
Agent

Raman spectroscopy characterization of anharmonicity and alloying effects in semiconductor materials

150307-Thumbnail Image.png
Description
The chemical sensitivity and spatial resolution of Raman spectroscopy, combined with the sensitivity of modern systems that can easily detect single atomic layers, have made this technique a preferred choice for the strain characterization of complex systems such as nanoscale

The chemical sensitivity and spatial resolution of Raman spectroscopy, combined with the sensitivity of modern systems that can easily detect single atomic layers, have made this technique a preferred choice for the strain characterization of complex systems such as nanoscale complementary metal-oxide-semiconductor - CMOS - devices. A disadvantage of Raman spectroscopy, however, is that the shifts associated with strain are not related to the geometrical deformations in any obvious way, so that careful calibrations are needed to determine the anharmonic coefficients (p, q and r) that relate strain to Raman shifts. A new set of measurements of the Raman shift in strained Ge films grown on relaxed SiGe buffer layers deposited on Si substrates is presented, and thereby, a new consistent set of values for the parameters p and q for Ge has been proposed. In this dissertation the study of the vibrational properties of Ge1-xSnx alloys has also been reported. The temperature dependence of the Raman spectrum of Ge-rich Ge1-x Snx and Ge1-x-ySi xSny alloys has been determined in the 10 K - 450 K range. The Raman line shift and width changes as a function of temperature are found to be virtually identical to those observed in bulk Ge. This result shows that the anharmonic decay process responsible for the temperature dependence is extremely robust against the alloy perturbation.
Date Created
2011
Agent

Structural and optical properties of wide bandgap nitride semiconductors using electron microscopy techniques

150275-Thumbnail Image.png
Description
ABSTRACT Group III-nitride semiconductor materials have been commercially used in fabrication of light-emitting diodes (LEDs) and laser diodes (LDs) covering the spectral range from UV to visible and infrared, and exhibit unique properties suitable for modern optoelectronic applications. Great advances

ABSTRACT Group III-nitride semiconductor materials have been commercially used in fabrication of light-emitting diodes (LEDs) and laser diodes (LDs) covering the spectral range from UV to visible and infrared, and exhibit unique properties suitable for modern optoelectronic applications. Great advances have recently happened in the research and development in high-power and high-efficiency blue-green-white LEDs, blue LDs and other optoelectronic applications. However, there are still many unsolved challenges with these materials. In this dissertation, several issues concerning structural, electronic and optical properties of III-nitrides have been investigated using a combination of transmission electron microscopy (TEM), electron holography (EH) and cathodoluminescence (CL) techniques. First, a trend of indium chemical inhomogeneity has been found as the indium composition increases for the InGaN epitaxial layers grown by hydride vapor phase epitaxy. Second, different mechanisms contributing to the strain relaxation have been studied for non-polar InGaN epitaxial layers grown on zinc oxide (ZnO) substrate. Third, various structural morphologies of non-polar InGaN epitaxial layers grown on free-standing GaN substrate have been investigated. Fourth, the effect of the growth temperature on the performance of GaN lattice-matched InAlN electron blocking layers has been studied. Finally, the electronic and optical properties of GaN nanowires containing a AlN/GaN superlattice structure have been investigated showing relatively small internal electric field and superlattice- and defect-related emissions along the nanowires.
Date Created
2011
Agent

Characterization of strain in core-shell nanowires: a Raman spectroscopy study

150232-Thumbnail Image.png
Description
Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced

Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced to keep the model analytical, which facilitates comparison with experimental results. In particular, the nanowires are assumed to be cylindrical, and their elastic constants isotropic. The simple analytical model is subsequently validated by performing numerical calculations using realistic nanowire geometries and cubic, anisotropic elastic constants. The comparison confirms that the analytic model is an excellent approximation that greatly facilitates quantitative Raman work, with expected errors in the strain determination that do not exceed 10%. Experimental Raman spectra of a variety of core-shell nanowires are presented, and the strain in the nanowires is assessed using the models described above. It is found that all structures present a significant degree of strain relaxation relative to ideal, fully strained Ge-Si core-shell structures. The analytical models are modified to quantify this strain relaxation.
Date Created
2011
Agent

Advanced nanostructured concepts in solar cells using III-V and silicon-based materials

150154-Thumbnail Image.png
Description
As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing

As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for multiple theoretical and practical reasons. In order to include advanced concept approaches into existing materials, nanostructures are used as they alter the physical properties of these materials. To explore advanced nanostructured concepts with existing materials such as III-V alloys, silicon and/or silicon/germanium and associated alloys, fundamental aspects of using these materials in advanced concept nanostructured solar cells must be understood. Chief among these is the determination and predication of optimum electronic band structures, including effects such as strain on the band structure, and the material's opto-electronic properties. Nanostructures have a large impact on band structure and electronic properties through quantum confinement. An additional large effect is the change in band structure due to elastic strain caused by lattice mismatch between the barrier and nanostructured (usually self-assembled QDs) materials. To develop a material model for advanced concept solar cells, the band structure is calculated for single as well as vertical array of quantum dots with the realistic effects such as strain, associated with the epitaxial growth of these materials. The results show significant effect of strain in band structure. More importantly, the band diagram of a vertical array of QDs with different spacer layer thickness show significant change in band offsets, especially for heavy and light hole valence bands when the spacer layer thickness is reduced. These results, ultimately, have significance to develop a material model for advance concept solar cells that use the QD nanostructures as absorbing medium. The band structure calculations serve as the basis for multiple other calculations. Chief among these is that the model allows the design of a practical QD advanced concept solar cell, which meets key design criteria such as a negligible valence band offset between the QD/barrier materials and close to optimum band gaps, resulting in the predication of optimum material combinations.
Date Created
2011
Agent

Investigation of light absorption and emission in Ge and GeSn films grown on Si substrates

149792-Thumbnail Image.png
Description
Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are

Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices from GeSn films were fabricated using newly developed CMOS-compatible protocols, and the devices were characterized with respect to their electrical properties and optical response. The detectors were found to have a detection range that extends into the near-IR, and the detection edge is found to shift to longer wavelengths with increasing Sn content, mainly due to the compositional dependence of the direct band gap E0. With only 2 % Sn, all of the telecommunication bands are covered by a single detector. Room temperature photoluminescence was observed from GeSn films with Sn content up to 4 %. The peak wavelength of the emission was found to shift to lower energies with increasing Sn content, corresponding to the decrease in the direct band gap E0 of the material. An additional peak in the spectrum was assigned to the indirect band gap. The separation between the direct and indirect peaks was found to decrease with increasing Sn concentration, as expected. Electroluminescence was also observed from Ge/Si and Ge0.98Sn0.02 photodiodes under forward bias, and the luminescence spectra were found to match well with the observed photoluminescence spectra. A theoretical expression was developed for the luminescence due to the direct band gap and fit to the data.
Date Created
2011
Agent

The effect of material properties on energy resolution in gamma-ray detectors

149608-Thumbnail Image.png
Description
Nuclear proliferation concerns have resulted in a desire for radiation detectors with superior energy resolution. In this dissertation a Monte Carlo code is developed for calculating energy resolution in gamma-ray detector materials. The effects of basic material properties such

Nuclear proliferation concerns have resulted in a desire for radiation detectors with superior energy resolution. In this dissertation a Monte Carlo code is developed for calculating energy resolution in gamma-ray detector materials. The effects of basic material properties such as the bandgap and plasmon resonance energy are studied using a model for inelastic electron scattering based on electron energy-loss spectra. From a simplified "toy model" for a generic material, energy resolution is found to oscillate as the plasmon resonance energy is increased, and energy resolution can also depend on the valence band width. By incorporating the model developed here as an extension of the radiation transport code Penelope, photon processes are also included. The enhanced version of Penelope is used to calculate the Fano factor and average electron-hole pair energy in semiconductors silicon, gallium arsenide, zinc telluride, and scintillators cerium fluoride and lutetium oxyorthosilicate (LSO). If the effects of the valence band density-of-states and phonon scattering are removed, the calculated energy-resolution for these materials is fairly close to that for a toy model with a uniform electron energy-loss probability density function. This implies that the details of the electron cascade may in some cases have only a marginal effect on energy resolution.
Date Created
2011
Agent

A study of two high efficiency energy conversion processes: semiconductor photovoltaics and semiconductor luminescence refrigeration

149377-Thumbnail Image.png
Description
As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells

As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for high energy conversion efficiency in both processes, respectively. The first half of this dissertation discusses the practically achievable energy conversion efficiency limit of solar cells. Since the demonstration of the Si solar cell in 1954, the performance of solar cells has been improved tremendously and recently reached 41.6% energy conversion efficiency. However, it seems rather challenging to further increase the solar cell efficiency. The state-of-the-art triple junction solar cells are analyzed to help understand the limiting factors. To address these issues, the monolithically integrated II-VI and III-V material system is proposed for solar cell applications. This material system covers the entire solar spectrum with a continuous selection of energy bandgaps and can be grown lattice matched on a GaSb substrate. Moreover, six four-junction solar cells are designed for AM0 and AM1.5D solar spectra based on this material system, and new design rules are proposed. The achievable conversion efficiencies for these designs are calculated using the commercial software package Silvaco with real material parameters. The second half of this dissertation studies the semiconductor luminescence refrigeration, which corresponds to over 100% energy usage efficiency. Although cooling has been realized in rare-earth doped glass by laser pumping, semiconductor based cooling is yet to be realized. In this work, a device structure that monolithically integrates a GaAs hemisphere with an InGaAs/GaAs quantum-well thin slab LED is proposed to realize cooling in semiconductor. The device electrical and optical performance is calculated. The proposed device then is fabricated using nine times photolithography and eight masks. The critical process steps, such as photoresist reflow and dry etch, are simulated to insure successful processing. Optical testing is done with the devices at various laser injection levels and the internal quantum efficiency, external quantum efficiency and extraction efficiency are measured.
Date Created
2010
Agent