Direct Solar–powered Membrane Distillation for Small–scale Desalination Applications

158810-Thumbnail Image.png
Description
Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity

Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity of groundwater. Yet, current desalination methods are difficult to be implemented in these areas due to their centralized large-scale design. In addition, these methods require intensive maintenance, and sometimes do not operate in high salinity feedwater. Membrane distillation (MD) is one technology that can potentially overcome these challenges and has received increasing attention in the last 15 years. The driving force of MD is the difference in vapor pressure across a microporous hydrophobic membrane. Compared to conventional membrane-based technologies, MD can treat high concentration feedwater, does not need intensive pretreatment, and has better fouling resistance. More importantly, MD operates at low feed temperatures and so it can utilize low–grade heat sources such as solar energy for its operation. While the integration of solar energy and MD was conventionally indirect (i.e. by having two separate systems: a solar collector and an MD module), recent efforts were focused on direct integration where the membrane itself is integrated within a solar collector aiming to have a more compact, standalone design suitable for small-scale applications. In this dissertation, a comprehensive review of these efforts is discussed in Chapter 2. Two novel direct solar-powered MD systems were proposed and investigated experimentally: firstly, a direct contact MD (DCMD) system was designed by placing capillary membranes within an evacuated tube solar collector (ETC) (Chapter 3), and secondly, a submerged vacuum MD (S-VMD) system that uses circulation and aeration as agitation techniques was investigated (Chapter 4). A maximum water production per absorbing area of 0.96 kg·m–2·h–1 and a thermal efficiency of 0.51 were achieved. A final study was conducted to investigate the effect of ultrasound in an S-VMD unit (Chapter 5), which significantly enhanced the permeate flux (up to 24%) and reduced the specific energy consumption (up to 14%). The results add substantially to the understanding of integrating ultrasound with different MD processes.
Date Created
2020
Agent

The Impact of Off-shore Wind Farms on Kuwait’s Electrical Grid

158617-Thumbnail Image.png
Description
Kuwait is committed to implementing the Kyoto Protocol in “Vision 2035” to reduce greenhouse gas emissions by shifting to the use of wind and solar energies [1]. The specific goal of the Vision 2035 is for renewables to comprise 15%

Kuwait is committed to implementing the Kyoto Protocol in “Vision 2035” to reduce greenhouse gas emissions by shifting to the use of wind and solar energies [1]. The specific goal of the Vision 2035 is for renewables to comprise 15% of Kuwait’s electrical generation by 2030. Wind and solar are abundant in Kuwait and can easily provide 15% of the total electrical generation. However, there are three significant obstacles. The first is Kuwait currently depends heavily on rapidly diminishing fossil fuels which are the major sources of CO2, NOx, and SOx emissions. Unfortunately, current plans are to build two conventional power stations by 2024. The purpose is to cover the energy needs for growing population. The second problem is that Kuwait has a very small land area. Consequently, there is limited space to build new utility-scale renewable power stations. The third issue is the low electricity tariff provides little incentive for the population to save energy. Offshore wind farms have the potential to provide thousands of GWh/yr to accomplish the goals of Vision 2035. Kuwait has a vast untapped supply of offshore wind energy. Specifically, there are eight offshore locations in which 50 turbines could be built each, for a total of 400 turbines. Using 4.2 MW turbines, this would provide 1.68 GW of wind energy, and increase the renewable portion of the electrical energy production to 13.93% (including Shagaya renewable park). Installing battery storage with the proposed wind turbines could provide fast ramp response which would serve to complement existing power production on Kuwait’s grid. In this work, six different turbines with different sizes are considered from 2.5 MW to 4.2 MW (from well-known manufacturers, such as, Nordex and Vestas), but ultimately 4.2 MW turbines are recommended. Data for this study has been supplied by: A) Civil Aviation -- temperature and wind speed, B) Ministry of Electricity and Water (MEW) -- electricity data, and C) Public Authority for Civil Information -- population data.
Date Created
2020
Agent

The Water Loss and Solar Panel Operating Condition Effects of Using Solar Photovoltaic Panels to Shade a Body of Water

132596-Thumbnail Image.png
Description
Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues

Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues of water and power. Using the setup of a PV module shading water, a stand-alone PV module, and unshaded water, it was found that shading water can reduce evaporation and lower PV module operating temperature at the same time. Using averaged data from two days of testing, the volume per unit surface area of water that evaporated per hour was 0.319 cm3/cm2 less for the shaded water compared to the unshaded water. The evaporation rates found in the experiment are compared to those of Lake Mead to see the amount of water lost on a large scale. For the operating temperature of the PV module, the module used for shading had a consistently lower temperature than the stand-alone module. On the first day, the shading module had an average temperature 5.1 C lower than the stand-alone module average temperature. On day two, the shading module had an average temperature 3.4 C lower than the stand-alone module average temperature. Using average temperatures between the two days from 10:30am and 4:45pm, the average daily temperature of the panel used for shading was 4.5C less than the temperature of the stand-alone panel. These results prove water shading by solar PV modules to be effective in reducing evaporation and lowering module operating temperature. Last, suggestions for future studies are discussed, such as performance analysis of the PV modules in this setting, economic analysis of using PV modules as shading, and the isolation of the different factors of evaporation (temperature, wind speed, and humidity).
Date Created
2019-05
Agent

Dendritic Electrodes as an Alternative Model for Current Collection in Solar Cells

137699-Thumbnail Image.png
Description
Exploring solar cell model alternatives using electrochemically deposited dendrites as a form of current collection to increase efficiency and top electrode transparency.
Date Created
2013-05
Agent

Solar Powered Intrusion Detector

137646-Thumbnail Image.png
Description
The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been

The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The first three months were spent researching and selecting suitable IC's and external components (e.g. solar panel, batteries, etc.). Then, the next couple of months were spent ordering specific materials and equipment for the construction of our prototype. Finally, the last two months were used to build a working prototype, with a substantial amount of time used for perfecting our system's packaging and operation. This report will consist of a detailed discussion of our team's research, design activities, prototype implementation, final budget, and final schedule. Technical discussion of the concepts behind our design will assist with understanding the design activities and prototype implementation sections that will follow. Due to the generous funding of the group from the Barrett Honors College, our overall budget available for the project was $1600. Of that amount, only $334.51 was spent on the actual system components, with $829.42 being spent on the equipment and materials needed for the testing and construction of the prototype. As far as the schedule goes, we are essentially done with the project. The only tasks left to finish are a successful defense of the project at the oral presentation on Friday, 29 March 2013, followed by a successful demo on 26 April 2013.
Date Created
2013-05
Agent

An Economic Perspective -- Hybrid Solar Modules: Harnessing Solar Energy for Electrical and Thermal Applications

137496-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C. The economic calculations show the expected energy cost savings for Arizona residents.
Date Created
2013-05
Agent

Lightning Audio: Plasma Arc Speaker Technology and Marketability

136974-Thumbnail Image.png
Description
The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which

The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which demonstrates the potential for a refined product in its conventional interfacing, casing, size, safety, and aesthetics. If the potential for an excellent ionization-based loudspeaker product were realized, it would be highly profitable in its reasonable cost of production, novelty, and place in a large and fitting market.
Date Created
2014-05
Agent

Lightning Audio Plasma Arc Speakers: Transformer Operation

136956-Thumbnail Image.png
Description
Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker.

Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker. The plasma arc speaker is a project that explores the use of high voltage arcs to produce audible sound amplification. The goal of the project is to prove feasibility that a consumer grade plasma arc speaker could exist in the marketplace. The inherent challenge was producing audio amplification that could compete with current loudspeakers all while ensuring user safety from the hazards of high voltage and current shock, electromagnetic damage, and ozone from the plasma arc. The project has thus far covered the process of design conception to realization of a prototype device. The operation of the plasma arc speaker is based on the high voltage plasma arc created between two electrodes. The plasma arc rapidly heats and cools the surrounding air creating changes in air pressure which vibrate the air. These pockets of pressurized air are heard as sound. The circuit incorporates a flyback transformer responsible for creating the high voltage necessary for arcing.
Date Created
2014-05
Agent

Lightning Audio Plasma Arc Speakers: Transformer Operation

136937-Thumbnail Image.png
Description
Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker.

Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker. The plasma arc speaker is a project that explores the use of high voltage arcs to produce audible sound amplification. The goal of the project is to prove feasibility that a consumer grade plasma arc speaker could exist in the marketplace. The inherent challenge was producing audio amplification that could compete with current loudspeakers all while ensuring user safety from the hazards of high voltage and current shock, electromagnetic damage, and ozone from the plasma arc. The project has thus far covered the process of design conception to realization of a prototype device. The operation of the plasma arc speaker is based on the high voltage plasma arc created between two electrodes. The plasma arc rapidly heats and cools the surrounding air creating changes in air pressure which vibrate the air. These pockets of pressurized air are heard as sound. The circuit incorporates a flyback transformer responsible for creating the high voltage necessary for arcing.
Date Created
2014-05
Agent

Signal Modulation in a High Voltage Plasma

136922-Thumbnail Image.png
Description
A high voltage plasma arc can be created and sustained in air by subjecting the gases to an electric field with high voltage potential, causing ionization. The internal energy of the ionized gases can be transferred to corresponding pressure waves

A high voltage plasma arc can be created and sustained in air by subjecting the gases to an electric field with high voltage potential, causing ionization. The internal energy of the ionized gases can be transferred to corresponding pressure waves when the matter involved switches between the gaseous and plasma states. By pulse-width modulating a transformer driving signal, the transfer of internal electrical energy to resonating pressure waves may be controlled. Audio wave input to the driver signal can then be modulated into the carrier wave and be used to determine the width of each pulse in the plasma, thus reconstructing the audio signal as pressure, or sound waves, as the plasma arc switches on and off. The result will be the audio waveform resonating out of the plasma arc as audible sound, and thus creating a plasma loudspeaker. Theory of operation was tested through construction of a plasma arc speaker, and resultant audio playback was analyzed. This analysis confirmed accurate reproduction of audio signal in audible sound.
Date Created
2014-05
Agent