Are Building Occupants Satisfied With Indoor Environmental Quality of Higher Education Facilities?

127960-Thumbnail Image.png
Description

Balancing energy performance and Indoor Environmental Quality (IEQ) performance has become a conventional tradeoff in sustainable building design. In recognition of the impact IEQ performance has on the occupants of educational facilities, universities are increasingly interested in tracking the performance

Balancing energy performance and Indoor Environmental Quality (IEQ) performance has become a conventional tradeoff in sustainable building design. In recognition of the impact IEQ performance has on the occupants of educational facilities, universities are increasingly interested in tracking the performance of their buildings. This paper highlights and quantifies several key factors that affect the occupant satisfaction of higher education facilities by comparing building performance of two campuses located in two different countries and environments. A total of 320 occupants participated in IEQ occupant satisfaction surveys, split evenly between the two campuses, to investigate their satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy. The difference in IEQ performance across the two campuses was around 17% which lays the foundation for a future study to explore the reasons behind this noticeable variation.

Date Created
2014-07-24
Agent

Analyzing Arizona OSHA Injury Reports Using Unsupervised Machine Learning

127964-Thumbnail Image.png
Description

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance. Given the large databases of OSHA historical events and reports, a manual analysis of the fatality and catastrophe investigations content is a time consuming and expensive process. This paper aims to evaluate the strength of unsupervised machine learning and Natural Language Processing (NLP) in supporting safety inspections and reorganizing accidents database on a state level. After collecting construction accident reports from the OSHA Arizona office, the methodology consists of preprocessing the accident reports and weighting terms in order to apply a data-driven unsupervised K-Means-based clustering approach. The proposed method classifies the collected reports in four clusters, each reporting a type of accident. The results show the construction accidents in the state of Arizona to be caused by falls (42.9%), struck by objects (34.3%), electrocutions (12.5%), and trenches collapse (10.3%). The findings of this research empower state and local agencies with a customized presentation of the accidents fitting their regulations and weather conditions. What is applicable to one climate might not be suitable for another; therefore, such rearrangement of the accidents database on a state based level is a necessary prerequisite to enhance the local safety applications and standards.

Date Created
2016-05-20
Agent

33 Buckets: Distributing Clean Water in Bangladesh

137439-Thumbnail Image.png
Description
Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill

Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative distribution system to inspire and empower people in Bangladesh and across the world. To start this process, we are working with the Rahima Hoque Girls' school in the rural area of Raipura, Bangladesh to give girls access to clean water where they spend the most time. Through our assessment trip in May 2012, we were able to acquire technical data, community input, and partnerships necessary to move our project forward. Additionally, we realized that in many cases, including the Rahima Hoque school, water problems are not caused by a lack of technology, but rather a lack of utilization and maintenance long-term. To remedy this, 33 Buckets has identified a local filter to have installed at the school, and has designed a small-scale business focused on selling clean water in bulk to the surrounding community. Our price point and association with the Rahima Hoque Girls' school makes our solution sustainable. Plus, with the success of our first site, we see the potential to scale. We already have five nearby schools interested in working to implement similar water projects, and with over 100,000 schools in Bangladesh, many of which lack access to the right water systems, we have a huge opportunity to impact millions of lives. This thesis project describes our journey through this process. First, an introduction to our work prior to the assessment trip and through the ASU EPICS program is given. Second, we include quantitative and qualitative details regarding our May 2012 assessment trip to the Rahima Hoque school and Dhaka. Third, we recount some of the experiences we were able to participate in following the trip to Bangladesh, including the Dell Social Innovation Challenge. Fourth, we examine the technical filtration methods, business model development, and educational materials that will be used to implement our solution this summer. Finally, we include an Appendix with a variety of social venture competitions and applications that we have submitted over the past two years, in addition to other supplementary materials. These are excellent examples of our diligence and provide unique insight into the growth of our project.
Date Created
2013-05
Agent

Development of the Project Definition Rating Index (PDRI) for small infrastructure projects

155771-Thumbnail Image.png
Description
Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make

Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up approximately half of all projects in the infrastructure construction sector (by count), the planning of these projects varies greatly, and that a consistent definition of “small infrastructure project” did not exist. This dissertation summarizes the motivations and efforts of Construction Industry Institute (CII) Research Team 314a to develop a non-proprietary front end planning tool specifically for small infrastructure projects, namely the Project Definition Rating Index (PDRI) for Small Infrastructure Projects. The author was a member of CII Research Team 314a, who was tasked with developing the tool in September 2015. The author, together with the research team, scrutinized and adapted an existing infrastructure-focused FEP tool, the PDRI for Infrastructure Projects, and other resources to develop a set of 40 specific elements relevant to the planning of small infrastructure projects. The author along with the research team supported the facilitation of seven separate industry workshops where 71 industry professionals evaluated the element descriptions and provided element prioritization data that was statistically analyzed and used to develop a corresponding weighted score sheet. The tool was tested on 76 completed and in-progress projects, the analysis of which showed that small infrastructure projects with greater scope definition (based on the tool’s scoring scheme) outperformed projects with lesser scope definition regarding cost performance, schedule performance, change performance, financial performance, and customer satisfaction. Moreover, the author found that users of the tool on in-progress projects agreed that the tool added value to their projects in a timeframe and manner consistent with their needs, and that they would continue using the tool in the future. The author also conducted qualitative and quantitative similarities and differences between PDRI – Infrastructure and PDRI – Small Infrastructure Projects in support of improved planning efforts for both types of projects. Finally, the author piloted a case study that introduced the PDRI into an introductory construction management course to enhance students’ learning experience.
Date Created
2017
Agent

Decision-making for utility scale photovoltaic systems: probabilistic risk assessment models for corrosion of structural elements and a material selection approach for polymeric components

155683-Thumbnail Image.png
Description
The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While

The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems could reach up to 18.9% of their total capacity, emerging technologies and models are driving for greater efficiency to assure the reliability of a product under its actual application. The objectives of this dissertation consist of (1) reviewing the state of the art and practice of prognostics and health management for the Direct Current (DC) side of photovoltaic systems; (2) assessing the corrosion of the driven posts supporting PV structures in utility scale plants; and (3) assessing the probabilistic risk associated with the failure of polymeric materials that are used in tracker and fixed tilt systems.

As photovoltaic systems age under relatively harsh and changing environmental conditions, several potential fault conditions can develop during the operational lifetime including corrosion of supporting structures and failures of polymeric materials. The ability to accurately predict the remaining useful life of photovoltaic systems is critical for plants ‘continuous operation. This research contributes to the body of knowledge of PV systems reliability by: (1) developing a meta-model of the expected service life of mounting structures; (2) creating decision frameworks and tools to support practitioners in mitigating risks; (3) and supporting material selection for fielded and future photovoltaic systems. The newly developed frameworks were validated by a global solar company.
Date Created
2017
Agent

Instantaneous project controls: current status, state of the art, benefits, and strategies

154610-Thumbnail Image.png
Description
Despite advancements in construction and construction-related technology, capital project performance deviations, typically overruns, remain endemic within the capital projects industry. Currently, management is generally unaware of the current status of their projects, and thus monitoring and control of projects

Despite advancements in construction and construction-related technology, capital project performance deviations, typically overruns, remain endemic within the capital projects industry. Currently, management is generally unaware of the current status of their projects, and thus monitoring and control of projects are not achieved effectively. In an ever-increasing competitive industry landscape, the need to deliver projects within technical, budgetary, and schedule requirements becomes imperative to sustain a healthy return on investment for the project stakeholders. The fact that information lags within the capital projects industry has motivated this research to find practices and solutions that facilitate Instantaneous Project Controls (IPC).

The author hypothesized that there are specific practices that, if properly implemented, can lead to instantaneous controls of capital projects. It is also hypothesized that instantaneous project controls pose benefits to project performance. This research aims to find practices and identify benefits and barriers to achieving a real-time mode of control. To achieve these objectives, several lines of inquiry had to be pursued. A panel of 13 industry professionals and three academics collaborated on this research project. Two surveys were completed to map the current state of project control practices and to identify state-of-the-art or ideal processes. Ten case studies were conducted within and outside of the capital projects industry to identify practices for achieving real-time project controls. Also, statistical analyses were completed on retrospective data for completed capital projects in order to quantify the benefits of IPC. In conclusion, this research presents a framework for implementing IPC across the capital projects industry. The ultimate output from this research is procedures and recommendations that improve project controls processes.
Date Created
2016
Agent

Developing a decision-making framework for market entry in the sheet metal construction industry

154579-Thumbnail Image.png
Description
Entering a new market in the construction industry is a complex task. Although many contractors have experienced the benefits of expanding their market offerings, many more have had unsuccessful experiences causing hardship for the entire organization. Standardized decision-making

Entering a new market in the construction industry is a complex task. Although many contractors have experienced the benefits of expanding their market offerings, many more have had unsuccessful experiences causing hardship for the entire organization. Standardized decision-making processes can help to increase the likelihood of success, but few specialty contractors have taken the time to develop a formal procedure. According to this research, only 6 percent of survey respondents and 7 percent of case study participants from the sheet metal industry have a formal decision process. Five sources of data (existing literature, industry survey, semi-structured interviews, factor prioritization workshops, and expert panel discussions) are consulted to understand the current market entry decision-making practices and needs of the sheet metal industry. The data help to accomplish three study objectives: (1) determine the current processes and best practices used for market entry decision-making in the sheet metal industry, (2) identify motivations leading to market entry by sheet metal contractors, and (3) develop a standardized decision process that improves market entry decision outcomes. Grounded in a firm understanding of industry practices, a three-phased decision-making framework is created to provide a structured approach to guide contractors to an informed decision. Four industry leaders with over 175 years of experience in construction reviewed and applied every step of the framework to ensure it is practical and easy to use for contractors.
Date Created
2016
Agent

A national study on leveraging public infrastructure funds: project performance and financing source analysis for public-private partnerships (PPP) in the U.S. transportation sector

154473-Thumbnail Image.png
Description
Transportation systems in the U.S. are in a poor state of disrepair. A significant investment is needed to replace or rehabilitate current transportation infrastructure. Currently, transportation investments are lackluster with the recession of 2008 heavily impacting transportation spending, inciting deficits

Transportation systems in the U.S. are in a poor state of disrepair. A significant investment is needed to replace or rehabilitate current transportation infrastructure. Currently, transportation investments are lackluster with the recession of 2008 heavily impacting transportation spending, inciting deficits and budgetary cuts at state and federal government levels. As a result, policy makers and public officials are increasingly looking for innovative financing and alternative delivery methods to supplement traditional financing and delivery for transportation projects. Subsequently, the number of public-private partnerships (PPP or P3) has increased substantially over the last two decades.

There is a growing need to quantify the project performance and financial benefits of PPP. This dissertation fills this gap in knowledge by performing a comprehensive quantitative analysis of PPP project performance and financial sources for transportation projects in the U.S. This study’s specific research objectives are:

(1) Develop a solid baseline for comparison, comprised of non-PPP projects;

(2) Quantify PPP project cost and schedule performance; and

(3) Quantify private versus public financing sources of PPP.

A thorough literature review led to the development of a structured data collection process for PPP and comparable non-PPP projects. Financing data was collected and verified for a total of 133 ongoing and completed projects; while performance data was verified for a subset of 81 completed projects. Data analysis included regression analysis, descriptive statistics, inferential statistics and non-parametric statistical tests.

The results provide benchmarks for PPP project performance and financing sources. For the performance results, non-PPP projects have an average cost change of 8.46 percent and an average schedule change of -0.22 percent. PPP projects have an average cost change of 3.04 percent and average schedule change of 1.38 percent. Statistical analysis showed cost change for PPP projects were superior to that of non-PPP; however, schedule change differences were not significant. For the financing results, private financing totaled 44.5 percent while public financing totaled 55.5 percent. This result shows private financing can be used to leverage public financing with close to a one-to-one ratio and that PPP has the potential to double the amount of infrastructure delivered to the public.
Date Created
2016
Agent

Performance of the construction manager at risk (CMAR) delivery method applied to pipeline construction projects

154239-Thumbnail Image.png
Description
Much of the water and wastewater lines in the United States are nearing the end of their useful life. A significant reinvestment is needed in the upcoming decades to replace or rehabilitate the water and wastewater infrastructure. Currently, the traditional

Much of the water and wastewater lines in the United States are nearing the end of their useful life. A significant reinvestment is needed in the upcoming decades to replace or rehabilitate the water and wastewater infrastructure. Currently, the traditional method for delivering water and wastewater pipeline engineering and construction projects is design-bid-build (DBB). The traditional DBB delivery system is a sequential low-integration process and can lead to inefficiencies and adverse relationships between stakeholders. Alternative project delivery methods (APDM) such as Construction Manager at Risk (CMAR) have been introduced to increase stakeholder integration and ultimately enhance project performance. CMAR project performance impacts have been studied in the horizontal and vertical construction industries. However, the performance of CMAR projects in the pipeline engineering and construction industry has not been quantitatively studied.

The dissertation fills this gap in knowledge by performing the first quantitative analysis of CMAR performance on pipeline engineering and construction projects. This study’s two research objectives are:

(1) Develop a CMAR baseline of commonly measured project performance metrics

(2) Statistically compare the cost and schedule performance of CMAR to that of the traditional DBB delivery method

A thorough literature review led to the development of a data collection survey used in conjunction with structured interviews to gather qualitative and quantitative performance data from 66 completed water and wastewater pipeline projects. Performance data analysis was conducted to provide performance benchmarks for CMAR projects and to compare the performance of CMAR and DBB.

This study provides the first CMAR performance benchmark for pipeline engineering and construction projects. The results span across seven metrics in four performance areas (cost, schedule, project change, and communication). Pipeline projects delivered using CMAR have a median cost and schedule growth of -5% and 5.10%, respectively. These results are significantly improved from DBB baseline performance shown in other industries. To verify this, a statistical analysis was done to compare the cost and schedule performance of CMAR to similar DBB pipeline projects. The results show that CMAR pipeline projects are being delivered with 6.5% less cost growth and with 12.5% less schedule growth than similar DBB projects, providing owners with increased certainty when delivering their pipeline projects.
Date Created
2015
Agent

Quantifying the impact of incentives on cost and schedule performance of construction projects in United States

154179-Thumbnail Image.png
Description
In today's era a lot of the construction projects suffer from time delay, cost overrun and quality defect. Incentive provisions are found to be a contracting strategy to address this potential problem. During last decade incentive mechanisms have gained importance,

In today's era a lot of the construction projects suffer from time delay, cost overrun and quality defect. Incentive provisions are found to be a contracting strategy to address this potential problem. During last decade incentive mechanisms have gained importance, and they are starting to become adopted in the construction projects. Most of the previous research done in this area was purely qualitative, with a few quantitative studies. This study aims to quantify the performance of incentives in construction by collecting the data from more than 30 projects in United States through a questionnaire survey. First, literature review addresses the previous research work related to incentive types, incentives in construction industry, incentives in other industry and benefits of incentives. Second, the collected data is analyzed with statistical methods to test the significance of observed changes between two data sets i.e. incentive projects and non-incentive projects. Finally, the analysis results provide evidence for the significant impact of having incentives; reduced the cost and schedule growth in construction projects in United States.
Date Created
2015
Agent