Using Industry Data to Make an Impact on Construction Practices over the Project Lifecycle

158853-Thumbnail Image.png
Description
The construction industry generates tremendous amounts of data every day. Data can inform practitioners to increase their project performance as well as the quality of the resulting built environment. The data gathered from each stage has unique characteristics, and processing

The construction industry generates tremendous amounts of data every day. Data can inform practitioners to increase their project performance as well as the quality of the resulting built environment. The data gathered from each stage has unique characteristics, and processing them to the appropriate information is critical. However, it is often difficult to measure the impact of the research across project phases (i.e., planning, design, construction, operation and maintenance, and end-of-life). The goal of this dissertation is to present how industry data can be used to make an impact on construction practices and test a suite of methods to measure the impact of construction research across project phases. The dissertation provides examples of impactful research studies for each project phase to demonstrate the collection and utilization of data generated from each stage and to assess the potential tangible impact on construction industry practices. The completed studies presented both quantitative and qualitative analyses. The first study focuses on the planning phase and provides a practice to improve frond end planning (FEP) implementation by developing the project definition rating index (PDRI) maturity and accuracy total rating system (MATRS). The second study uses earned value management system (EVMS) information from the design and construction phases to support reliable project control and management. The dissertation then provides a third study, this time focusing on the operations phase and comparing the impact of project delivery methods using the international roughness index (IRI). Lastly, the end-of-life or decommissioning phase is tackled through a study that gauges the monetary impact of the circular economy concept applied to reuse construction and demolition (C&D) waste. This dissertation measures the impact of the research according to the knowledge mobilization (KMb) theory, which illustrates the value of the work to the public and to practitioners.
Date Created
2020
Agent

Role of Circular Economy in the Indigenous Built Environment: An Assessment of Design and Construction Potential of Circular Building Materials in an American Indian Community

158698-Thumbnail Image.png
Description
This thesis intends to help inform American Indian nations’ decision making related to housing. The study recognizes the urgent need for housing solutions that fit the needs of a community as well as benefit the overall ecosystem. One model that

This thesis intends to help inform American Indian nations’ decision making related to housing. The study recognizes the urgent need for housing solutions that fit the needs of a community as well as benefit the overall ecosystem. One model that can offer guidance is the Circular Economy (CE) model. A well-thought-out CE process can provide housing solutions that are economically, socially, and environmentally sustainable. It also stimulates the local economy by strategically introducing positive changes. This research identifies the construction potential of available circular materials as compared to more contemporary building materials. It then recommends a closed-loop circular model that utilizes the community’s existing infrastructure to develop affordable housing. The proposed CE model operates within the built environment, stimulating local employment while catering to the needs of the residents. Such an approach can prove to be beneficial for the local community and perhaps scalable to the global economy.
Date Created
2020
Agent

Structure-Property Relationships to Understand Comprehensive Rejuvenation Mechanisms of Aged Asphalt Binder

158623-Thumbnail Image.png
Description
This research focused on the structure-property relationships of a rejuvenator to understand the comprehensive rejuvenation mechanism of aged asphalt binder. Aged asphalt such as recycled asphalt shingles (RAS) and reclaimed asphalt pavement (RAP) contain various amounts of asphalt binder. However,

This research focused on the structure-property relationships of a rejuvenator to understand the comprehensive rejuvenation mechanism of aged asphalt binder. Aged asphalt such as recycled asphalt shingles (RAS) and reclaimed asphalt pavement (RAP) contain various amounts of asphalt binder. However, the asphalt binder in RAS and RAP is severely aged and inferior in properties compared to a virgin binder. To address this issue, liquid additives have been used under the general title of rejuvenators. That poses an additional challenge associated with the lack of clear metrics to differentiate between softeners and rejuvenators. Therefore, there is a need for a thorough study of rejuvenators. In this study, diverse-sourced rejuvenators have been used in RAS and RAP-modified binders as well as laboratory-prepared aged binders. The properties of the rejuvenated aged binder were characterized at a macro-level and molecular level. The study showed that the performance of the RAS-modified binder was significantly improved after bio-modification by a bio-rejuvenator.

This study further evaluated laboratory-prepared aged asphalt rejuvenated with different rejuvenators. The results found that oxidized bitumen became soft after adding rejuvenators, regardless of their source. Molecular dynamics simulation showed that the effective rejuvenator restored the molecular conformation and reduced the size of asphaltene nanoaggregates.

The study results showed that due to the specific chemical composition of certain rejuvenators, they may negatively impact the durability of the mixture, especially about its resistance to moisture damage and aging. Computational analysis showed that while the restoration capacity of rejuvenators is related to their penetration into and peptizing of asphaltene nanoaggregates, the durability of the restored aged asphalt is mainly related to the polarizability values of the rejuvenator. Rejuvenators with lower polarizability showed better resistance to aging and moisture damage.

In summary, this study develops the rheology-based indicators which relate to the molecular level phenomenon in the rejuvenation mechanism. The rheology-based indicators, for instance, crossover modulus and crossover frequency differentiated the rejuvenators from recycling agents. Moreover, the study found that rejuvenation efficiency and durability are depended on the chemistry of rejuvenators. Finally, based on the learning of chemistry, a chemically balanced rejuvenator is synthesized with superior rejuvenation properties.
Date Created
2020
Agent

Innovative Delivery of Water Infrastructure Projects

158284-Thumbnail Image.png
Description
Water utilities across the United States are facing numerous challenges, such as limited funding and increasing project complexity, in constructing and upgrading their aging infrastructure. One innovative method to overcome these challenges is through the use of alternative project delivery

Water utilities across the United States are facing numerous challenges, such as limited funding and increasing project complexity, in constructing and upgrading their aging infrastructure. One innovative method to overcome these challenges is through the use of alternative project delivery methods (APDM), such as construction management at-risk (CMAR) and design-build (DB). Previous research has shown that APDM have the potential to deliver higher performing water infrastructure projects when compared to the traditional design-bid-build (DBB) method. However, there is a need to further examine APDM practices and develop tools that may support utilities in the delivery of their APDM water infrastructure projects. This study fills the knowledge gap by conducting several studies that may support public and private utilities in improving the delivery of their APDM water infrastructure projects. First, APDM implementation practices for water infrastructure projects are identified by assessing the state of practice, particularly during project procurement and execution. Second, DB project administration best practices are determined to support utilities seeking to add DB to their organization’s project delivery toolbox. Third, a pioneering web-based project delivery method decision-support tool was developed to aid utilities in selecting the appropriate delivery method for their water project. Finally, project-specific factors and attributes that impact project delivery performance are investigated through exploratory modeling and analysis. The study collected data on 75 completed treatment plant projects, conducted interviews with ten utilities that successfully deliver their water projects using DB, and worked closely with several industry experts through industry workshops and panels. Key findings related to water infrastructure project delivery revealed in this study included: (1) guaranteed maximum price (GMP) is the preferred compensation type for APDM projects; (2) utilities statistically having the lowest comfort level with delivering CMAR projects; (3) qualifications-based procurement is an effective DB project delivery practice; (4) the identification of 13 key project delivery method selection factors; and (5) the three highest predictors that impact unit cost performance are project complexity, project team chemistry and communication, and project size.
Date Created
2020
Agent

Quantifying the Impact of Circular Economy Applied to the Built Environment: A Study of Construction and Demolition Waste to Identify Leverage Points

157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

Date Created
2019
Agent

Contract Administration Functions and Tools for Design-Build and Construction Manager/General Contractor Project Delivery in U.S. Highway Construction

157081-Thumbnail Image.png
Description
The demand for new highway infrastructure, the need to repair aging infrastructure, and the drive to optimize public expenditures on infrastructure have led transportation agencies toward alternative contracting methods (ACMs) such as design-build (DB) and construction manager/general contractor (CM/GC). U.S.

The demand for new highway infrastructure, the need to repair aging infrastructure, and the drive to optimize public expenditures on infrastructure have led transportation agencies toward alternative contracting methods (ACMs) such as design-build (DB) and construction manager/general contractor (CM/GC). U.S. transportation agencies have substantial experience with traditional design-bid-build delivery. To promote ACMs, the Federal Highway Administration and the National Cooperative Highway Research Program (NCRHP) have published ACM guidance documents. However, the published material and research tend to focus on pre-award activities. The need for guidance on ACM post-award activities is confirmed in NCHRP’s request for a guidebook focusing on ACM contract administration (NCHRP 2016).

This dissertation fills the crucial knowledge gap in contract administration functions and tools for DB and CM/GC highway project delivery. First, this research identifies and models contract administration functions in DBB, CM/GC, and DB using integrated definition modeling (IDEF0). Second, this research identifies and analyzes DB and CM/GC tools for contract administration by conducting 30 ACM project case studies involving over 90 ACM practitioners. Recommendations on appropriate use regarding project phase, complexity, and size were gathered from 16 ACM practitioners. Third, the alternative technical concepts tool was studied. Data from 30 DB projects was analyzed to explore the timing of DB procurement and DB initial award performance in relation to the project influence curve. Types of innovations derived from ATCs are discussed. Considerable industry input at multiple stages grounds this research in professional practice.

Results indicate that the involvement of the contractor during the design phase for both DB and CM/GC delivery creates unique contract administration functions that need unique tools. Thirty-six DB and CM/GC tools for contract administration are identified with recommendations for effective implementation. While strong initial award performance is achievable in DB projects, initial award performance in this sample of projects is only loosely tied to the level of percent base design at procurement. Cost savings typically come from multiple ATCs, and innovations tend to be incremental rather than systemic, disruptive, or radical. Opportunity for innovation on DB highway projects is influenced by project characteristics and engaging the DB entity after pre-project planning.
Date Created
2019
Agent

Assessing the Maturity and Accuracy of Front End Engineering Design (FEED) for Large, Complex Industrial Projects

157056-Thumbnail Image.png
Description
Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering

Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success of large industrial

projects. The primary objective of this dissertation focuses on FEED maturity and accuracy

and its impact on project performance. The author was a member of the Construction

Industry Institute (CII) Research Team (RT) 331, which was tasked to develop the FEED

Maturity and Accuracy Total Rating System (FEED MATRS), pronounced “feed matters.”

This dissertation provides the motivation, methodology, data analysis, research findings

(which include significant correlations between the maturity and accuracy of FEED and

project performance), applicability and contributions to academia and industry. A scientific

research methodology was employed in this dissertation that included a literature review,

focus groups, an industry survey, data collection workshops, in-progress projects testing,

and statistical analysis of project performance. The results presented in this dissertation are

based on input from 128 experts in 57 organizations and a data sample of 33 completed

and 11 on-going large industrial projects representing over $13.9 billion of total installed

cost. The contributions of this work include: (1) developing a tested FEED definition for

the large industrial projects sector, (2) determining the industry’s state of practice for

measuring FEED deliverables, (3) developing an objective and scalable two-dimensional

method to measure FEED maturity and accuracy, and (4) quantifying that projects with

high FEED maturity and accuracy outperformed projects with low FEED maturity and

accuracy by 24 percent in terms of cost growth, in relation to the approved budget.
Date Created
2019
Agent

Experimental Measurements of Power Output of a Cu/Cu2+ Thermogalvanic Brick using Effective Electrode Surface Area Alterations

132998-Thumbnail Image.png
Description
The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all

The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed nations. A significant portion of the energy consumed for heating and cooling, where a majority is dissipated to the ambient as waste heat. This research answers how much power output (µW·cm-2) can the thermogalvanic brick experimentally produce from an induced temperature gradient? While there are multiple avenues for the initial and optimized prototype design, one key area of interest relating to thermogalvanic devices is the effective surface area of the electrodes. This report highlights the experimental power output measurements of a Cu/Cu2+ thermogalvanic brick by manipulating the effective surface area of the electrodes. Across three meshes, the maximum power output normalized for temperature was found to be between 2.13-2.87 x 10-3 μWcm-2K-2. The highest normalized power output corresponded to the mesh with the highest effective surface area, which was classified as the fine mesh. This intuitively aligned with the theoretical understanding of surface area and maximum power output, where decreasing the activation resistance also reduces the internal resistance, which increases the theoretical maximum power.
Date Created
2019-05
Agent

Project Delivery Method Performance Evaluation for Water and Wastewater Capital Projects

156897-Thumbnail Image.png
Description
The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative

The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting the benefits of reduced project schedule and cost. The main purpose of this study is to conduct a qualitative and quantitative performance evaluation to assess the current impact of APDM in the water and wastewater industry. A national survey was conducted targeting completed water and wastewater treatment plant projects. Responses were obtained from 75 utilities and constructors that either completed their projects using DBB, construction manager at risk (CMAR), or design-build (DB). Data analysis revealed that CMAR and DB statistically outperformed DBB in terms of project speed and intensity. Performance metrics such as cost growth, schedule growth, unit cost, factors influencing project delivery method selection, scope changes, warranty and latent defects, and several others are also evaluated. The main contribution of this study was that it was able to show that for the same project cost, water and wastewater treatment plants could be delivered under a faster schedule and with higher quality through the utilization of APDM.
Date Created
2018
Agent

Experimental Measurements of the Power Output of a Cu/Cu2+ Thermogalvanic Brick

156839-Thumbnail Image.png
Description
Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this

Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the form factor of a UK metric brick sized at 215 mm × 102.5 mm × 65 mm for the experimental power output using a copper/copper(II) (Cu/Cu2+) based aqueous electrode. In this study the thermogalvanic brick uses a 0.7 M CuSO4 + 0.1 M H2SO4 aqueous electrolyte with copper electrodes as two of the walls. The other walls of the thermogalvanic brick are made of 5.588 mm (0.22 in) thick acrylic sheet. Internal to the brick, a 0.2 volume fraction minimal surface Schwartz diamond (Schwartz D) structure made of ABS, Polycarbonate-ABS (PCABS), and Polycarbonate-Carbon Fiber (PCCF) was tested to see the effects on the power output of the thermogalvanic brick. By changing the size of the thermogalvanic cell into that of a brick will allow this thermogalvanic cell to become the literal building blocks of green buildings. The thermogalvanic brick was tested by applying a constant power to the strip heater attached to the hot side of the brick, resulting in various ∆T values between 8◦C and 15◦C depending on the material of Schwartz D inside. From this, it was found that a single Cu/Cu2+ thermogalvanic brick containing the PCCF or PCABS Schwartz D performed equivalently well at a 163.8% or 164.9%, respectively, higher normalized power density output than the control brick containing only electrolyte solution.
Date Created
2018
Agent