Using Reliability Centered Maintenance (RCM) Analyses to Develop Large Diameter Water Pipeline Maintenance Strategies

193014-Thumbnail Image.png
Description
The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in

The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in loss of business, service disruption to a significant number of customers, loss of water, costly emergency repairs, and even loss of life. The American Water Works Association’s (AWWA) 2020 “State of the Water Industry” report states the top issue facing the water industry since 2016 is aging infrastructure, with the second being financing for improvements. The industry must find innovative ways to extend asset life and reduce maintenance expenditures. While are many different assets comprise the drinking water industry, pipelines are a major component and often neglected because they are typically buried. Reliability Centered Maintenance (RCM) is a process used to determine the most effective maintenance strategy for an asset, with the ultimate goal being to establish the required function of the asset with the required reliability at the lowest operations and maintenance costs. The RCM philosophy considers Preventive Maintenance, Predictive Maintenance, Condition Based Monitoring, Reactive Maintenance, and Proactive Maintenance techniques in an integrated manner to increase the probability an asset will perform its designed function throughout its design life with minimal maintenance. In addition to determining maintenance tasks, the timely performance of those tasks is crucial. If performed too late an asset may fail; if performed too early, resources that may be used better elsewhere are expended. Utility agencies can save time and money by using RCM analysis for their drinking water infrastructure. This dissertation reviews industries using RCM, discusses the benefits of an RCM analysis, and goes through a case study of an RCM at a large aqueduct in the United States. The dissertation further discusses the consequence of failure of large diameter water pipelines and proposes a regression model to help agencies determine the optimum time to perform maintenance tasks on large diameter prestressed concrete pipelines using RCM analysis.
Date Created
2024
Agent

Evaluating Environmental Impacts of Open-cut vs. Trenchless in Egypt

187709-Thumbnail Image.png
Description
During the rapid growth of infrastructure projects globally, countries pay high environmental and social costs as a result of the impacts caused from utilizing the traditional open-cut utility installation method that still widely being used in Egypt. For that, it

During the rapid growth of infrastructure projects globally, countries pay high environmental and social costs as a result of the impacts caused from utilizing the traditional open-cut utility installation method that still widely being used in Egypt. For that, it was essential to have alternatives to reduce these environmental impacts and social costs; however, there are some obstacles that prevent the implementation and the realization of these alternatives.This research is conducted mainly to evaluate the environmental impacts of open-cut excavation vs. trenchless technology in Egypt, through two main methodologies. Firstly, a field survey that aims to measure knowledge of people working in the Egyptian construction industry of trenchless technology, and the harms caused from keeping utilizing open-cut for installing all kinds of underground utilities. In addition to investigating the reasons behind not relying on trenchless technology as a safe alternative for open-cut in Egypt. Furthermore, in order to compare the greenhouse gases emissions resulted from both open-cut vs trenchless technology, a real case study is applied quantifying the amounts of the resulted greenhouse gases from each method. The results show that greenhouse gases emissions generated from open-cut were extremely higher than that of horizontal directional drilling as a trenchless installation method.
Date Created
2023
Agent

The Investigation of Sustainable Construction Perceptions in the Kuwaiti Construction Industry

187379-Thumbnail Image.png
Description
The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all

The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all sectors. Construction is a critical driving instrument of economic activity, and to achieve sustainable development, it is vital to transform conventional construction into a more sustainable model. The research investigated sustainable construction perceptions in Kuwait, a rapidly growing country with a high volume of construction activities. Kuwait has ambitious plans to transition into a more sustainable economic development model, and the construction industry needs to align with these plans. This research aims to identify the characteristics of sustainable construction applications in the Kuwaiti construction market, such as awareness, current perceptions, drivers and barriers, and the construction regulations' impact. The research utilized a qualitative approach to answer research questions and deliver research objectives by conducting eleven Semi-structured interviews with experienced professionals in the Kuwaiti construction market to collect rich data that reflects insights and understandings of the Kuwaiti construction industry. The Thematic analysis of the data resulted in six themes and one sub-theme that presented reflections, insights, and perspectives on sustainable construction perceptions in the Kuwaiti construction market. The research findings reflected poor sustainable construction awareness and poor environmental and social application in the construction industry, the determinant role of construction regulations in promoting sustainable construction. and barriers and drivers to sustainable construction applications. The research concluded with answers to research questions, delivery of research objectives, and an explanation of sustainable construction perceptions in the Kuwaiti construction market.
Date Created
2023
Agent

Greening Existing Residential Buildings in Saudi Arabia with Mostadam as an Objective

171936-Thumbnail Image.png
Description
Although Saudi Arabia is moving towards a sustainable future, Existing residential buildings in the country are extremely unsustainable. Therefore, there is a necessity for greening the existing residential building. Mostadam green rating systems was developed by the Saudi ministry of

Although Saudi Arabia is moving towards a sustainable future, Existing residential buildings in the country are extremely unsustainable. Therefore, there is a necessity for greening the existing residential building. Mostadam green rating systems was developed by the Saudi ministry of housing in 2019 to address the long-term sustainability vision in residential buildings in the country. By setting Mostadam requirements as an objective of the retrofit process, it will ensure that the building achieve sustainability. However, Mostadam is new and there is a lack of knowledge of implementing its requirements on existing buildings. The aim of this research is to develop a framework to green existing residential buildings in Saudi Arabia to achieve Mostadam energy and water minimum requirements. The framework was developed based on an extensive keyword-based search and an analysis of 92 relevant research. The process starts with assessing the building against the minimum requirements of energy and water of Mostadam. After that, optimization phase is conducted. Building information modelling is used in the optimization phase. Energy and water efficiency optimization measures are identified from the analysed literature. Revit is used in the base model authoring and Green building studio cloud is used to simulate the energy and water efficiency measures. Then, payback period is calculated for all the efficiency measured to assess the decision making. A case study of a villa in Riyadh, Saudi Arabia is provided. result shows that the implemented efficiency measures led to an increment of 37.5% in annual energy savings and 26.1% in the annual water savings. Results shows that the application of the proposed framework supports evaluating energy and water efficiency measures to implement it on the buildings to achieve Mostadam minimum energy and water requirements. Recommendations were made for future work to bridge the knowledge gap.
Date Created
2022
Agent

The Impact of COVID-19 Pandemic on Construction Projects in Saudi Arabia and Their Time Schedules

168450-Thumbnail Image.png
Description
As the construction industry in Saudi Arabia was on its way to thriving again. Their growth was due to the unprecedented volume of planned projects such as large-scale and unique projects. Suddenly, the world was faced with one of the

As the construction industry in Saudi Arabia was on its way to thriving again. Their growth was due to the unprecedented volume of planned projects such as large-scale and unique projects. Suddenly, the world was faced with one of the most disrupting events in the last century which had a devastating impact on the construction industry specifically. This paper explores mainly the impact of the COVID-19 pandemic on construction projects in Saudi Arabia. Particularly, this paper explores how the pandemic and its related events contributed to the projects' schedule disturbances. This is because most of the projects rely on manpower and supply chains which were heavily disrupted due to the protective measures. For that, a study was conducted to evaluate the impact on the construction projects in Saudi Arabia, to what extent the schedule projects were affected, and what were the main reasons for the schedule delays. The research relied on a field survey and schedule analysis for 12 projects which resulted in identifying several causes of delays and the delayed durations that the projects in Saudi Arabia were facing. This research allows those in construction fields to identify the main causes of delays in order to avoid or minimize the impact of these issues on future projects.
Date Created
2021
Agent

The Identification of a Potential Solution to Improve the Construction Project Performance in the Chinese Construction Industry: by Analyzing Similar Construction Industries in Other Developing Countries

158113-Thumbnail Image.png
Description
The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is on par with many developed nations, despite it being a

The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is on par with many developed nations, despite it being a developing country. Despite its rapid growth, the productivity and profitability of the Chinese Construction Industry is low compared to similar sized construction industries (United States, United Kingdom, etc.). In addition to the low efficiency of the Chinese Construction Industry, there is minimal documentation available showing the performance of the Chinese Construction Industry (projects completed on time, on budget, and customer satisfaction ratings).

The purpose of this research is to investigate potential solutions that could address the poor efficiency and performance of the Chinese Construction Industry. This research is divided into three phases; first, a literature review to identify countries that have similar construction industries to the Chinese Construction Industry. The second phase is to compare the risks and identify solutions that are proposed to increase the performance of similar construction industries and the Chinese Construction Industry. The third phase is to create a survey from the literature-based information to validate the concepts with the Chinese Construction Industry professionals and stakeholders.
Date Created
2020
Agent

Beyond recycling: design for disassembly, reuse, and circular economy in the built environment

156726-Thumbnail Image.png
Description
Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases.

Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases. The circular economy (CE) is based on the concept of a closed-loop cycle (CLC) and proposes a solution that, in theory, can eliminate the environmental impacts caused by construction and demolition (C&D) waste and increase the efficiency of resources’ use. In a CLC, building materials are reused, remanufactured, recycled, and reintegrated into other buildings (or into other sectors) without creating any waste.

Designing out waste is the core principle of the CE. Design for disassembly or design for deconstruction (DfD) is the practice of planning the future deconstruction of a building and the reuse of its materials. Concepts like DfD, CE, and product-service systems (PSS) can work together to promote CLC in the built environment. PSS are business models based on stewardship instead of ownership. CE combines DfD, PSS, materials’ durability, and materials’ reuse in multiple life cycles to promote a low-carbon, regenerative economy. CE prioritizes reuse over recycling. Dealing with resource scarcity demands us to think beyond the incremental changes from recycling waste; it demands an urgent, systemic, and radical change in the way we design, build, and procure construction materials.

This dissertation aims to answer three research questions: 1) How can researchers estimate the environmental benefits of reusing building components, 2) What variables are susceptible to affect the environmental impact assessment of reuse, and 3) What are the barriers and opportunities for DfD and materials’ reuse in the current design practice in the United States.

The first part of this study investigated how different life cycle assessment (LCA) methods (i.e., hybrid LCA and process-based LCA), assumptions (e.g., reuse rates, transportation distances, number of reuses), and LCA timelines can affect the results of a closed-loop LCA. The second part of this study built on interviews with architects in the United States to understand why DfD is not part of the current design practice in the country.
Date Created
2018
Agent

Investigating the Relationship between Energy Consumption, CO2 Emissions, and the Factors Affecting Them in the United States Building Sector: A Macro and Micro View

156707-Thumbnail Image.png
Description
The United States building sector was the most significant carbon emission contributor (over 40%). The United States government is trying to decrease carbon emissions by enacting policies, but emissions increased by approximately 7 percent in the U.S. between 1990 and

The United States building sector was the most significant carbon emission contributor (over 40%). The United States government is trying to decrease carbon emissions by enacting policies, but emissions increased by approximately 7 percent in the U.S. between 1990 and 2013. To reduce emissions, investigating the factors affecting carbon emissions should be a priority. Therefore, in this dissertation, this research examine the relationship between carbon emissions and the factors affecting them from macro and micro perspectives. From a macroscopic perspective, the relationship between carbon dioxide, energy resource consumption, energy prices, GDP (gross domestic product), waste generation, and recycling waste generation in the building and waste sectors has been verified. From a microscopic perspective, the impact of non-permanent electric appliances and stationary and non-stationary occupancy has been investigated. To verify the relationships, various kinds of statistical and data mining techniques were applied, such as the Granger causality test, linear and logarithmic correlation, and regression method. The results show that natural gas and electricity prices are higher than others, as coal impacts their consumption, and electricity and coal consumption were found to cause significant carbon emissions. Also, waste generation and recycling significantly increase and decrease emissions from the waste sector, respectively. Moreover, non-permanent appliances such as desktop computers and monitors consume a lot of electricity, and significant energy saving potential has been shown. Lastly, a linear relationship exists between buildings’ electricity use and total occupancy, but no significant relationship exists between occupancy and thermal loads, such as cooling and heating loads. These findings will potentially provide policymakers with a better understanding of and insights into carbon emission manipulation in the building sector.
Date Created
2018
Agent

Building Management System Integration: Energy Data Analytics

133914-Thumbnail Image.png
Description
This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona

This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background of previous studies in the area, some that agree with the research hypotheses and some that take a different path. Real-time data was collected hourly for energy consumption and external air temperature. Intermittent internal air temperature was collected by undergraduate researcher, Charles Banke. Regression analysis was used to prove two research hypotheses. The authors found no correlation between external air temperature and energy consumption, nor did they find a relationship between internal air temperature and energy consumption. This paper also includes recommendations for future work to improve the study.
Date Created
2018-05
Agent

Semi-Supervised Energy Modeling (SSEM) for Building Clusters Using Machine Learning Techniques

127833-Thumbnail Image.png
Description

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data continues to grow, new data analysis methods are needed to

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data continues to grow, new data analysis methods are needed to address the increasing complexity. Using data from the energy loss between the supply (energy production sources) and demand (buildings and cities consumption), this paper proposes a Semi-Supervised Energy Model (SSEM) to analyse different loss factors for a building cluster. This is done by deep machine learning by training machines to semi-supervise the learning, understanding and manage the process of energy losses. Semi-Supervised Energy Model (SSEM) aims at understanding the demand-supply characteristics of a building cluster and utilizes the confident unlabelled data (loss factors) using deep machine learning techniques. The research findings involves sample data from one of the university campuses and presents the output, which provides an estimate of losses that can be reduced. The paper also provides a list of loss factors that contributes to the total losses and suggests a threshold value for each loss factor, which is determined through real time experiments. The conclusion of this paper provides a proposed energy model that can provide accurate numbers on energy demand, which in turn helps the suppliers to adopt such a model to optimize their supply strategies.

Date Created
2015-09-14
Agent