Explainable AI in Workflow Development and Verification Using Pi-Calculus

157864-Thumbnail Image.png
Description
Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language

Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and Robotics Programming Language Environment (VIPLE). VIPLE is based on computational thinking and flowchart, which reduces the needs of memorization of detailed syntax in text-based programming languages. VIPLE has been used at Arizona State University (ASU) in multiple years and sections of FSE100 as well as in universities worldwide. Another major issue with teaching large programming classes is the potential lack of qualified teaching assistants to grade and offer insight to a student’s programs at a level beyond output analysis.

In this dissertation, I propose a novel framework for performing semantic autograding, which analyzes student programs at a semantic level to help students learn with additional and systematic help. A general autograder is not practical for general programming languages, due to the flexibility of semantics. A practical autograder is possible in VIPLE, because of its simplified syntax and restricted options of semantics. The design of this autograder is based on the concept of theorem provers. To achieve this goal, I employ a modified version of Pi-Calculus to represent VIPLE programs and Hoare Logic to formalize program requirements. By building on the inference rules of Pi-Calculus and Hoare Logic, I am able to construct a theorem prover that can perform automated semantic analysis. Furthermore, building on this theorem prover enables me to develop a self-learning algorithm that can learn the conditions for a program’s correctness according to a given solution program.
Date Created
2020
Agent

Proactive Identification of Cybersecurity Threats Using Online Sources

157857-Thumbnail Image.png
Description
Many existing applications of machine learning (ML) to cybersecurity are focused on detecting malicious activity already present in an enterprise. However, recent high-profile cyberattacks proved that certain threats could have been avoided. The speed of contemporary attacks along with the

Many existing applications of machine learning (ML) to cybersecurity are focused on detecting malicious activity already present in an enterprise. However, recent high-profile cyberattacks proved that certain threats could have been avoided. The speed of contemporary attacks along with the high costs of remediation incentivizes avoidance over response. Yet, avoidance implies the ability to predict - a notoriously difficult task due to high rates of false positives, difficulty in finding data that is indicative of future events, and the unexplainable results from machine learning algorithms.



In this dissertation, these challenges are addressed by presenting three artificial intelligence (AI) approaches to support prioritizing defense measures. The first two approaches leverage ML on cyberthreat intelligence data to predict if exploits are going to be used in the wild. The first work focuses on what data feeds are generated after vulnerability disclosures. The developed ML models outperform the current industry-standard method with F1 score more than doubled. Then, an approach to derive features about who generated the said data feeds is developed. The addition of these features increase recall by over 19% while maintaining precision. Finally, frequent itemset mining is combined with a variant of a probabilistic temporal logic framework to predict when attacks are likely to occur. In this approach, rules correlating malicious activity in the hacking community platforms with real-world cyberattacks are mined. They are then used in a deductive reasoning approach to generate predictions. The developed approach predicted unseen real-world attacks with an average increase in the value of F1 score by over 45%, compared to a baseline approach.
Date Created
2019
Agent

Smart resource allocation in internet-of-things: perspectives of network, security, and economics

157577-Thumbnail Image.png
Description
Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices.

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the deployment and utilization of IoT services in many resource-intense and QoS-sensitive scenarios like autonomous driving and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to technological, economic and environmental factors. In this dissertation, I seek to address this issue by means of smart resource allocation. I propose mathematical models to formally describe various resource constraints and application scenarios in IoT. Based on these, I design smart resource allocation algorithms and protocols to maximize the system performance in face of resource restrictions. Different aspects are tackled, including networking, security, and economics of the entire IoT ecosystem. For different problems, different algorithmic solutions are devised, including optimal algorithms, provable approximation algorithms, and distributed protocols. The solutions are validated with rigorous theoretical analysis and/or extensive simulation experiments.
Date Created
2019
Agent

Cost-Sensitive Selective Classification and its Applications to Online Fraud Management

157174-Thumbnail Image.png
Description
Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card fraud in online transactions. Every online transaction comes with a fraud risk and it is the merchant's liability to detect and stop fraudulent transactions. Merchants utilize various mechanisms to prevent and manage fraud such as automated fraud detection systems and manual transaction reviews by expert fraud analysts. Many proposed solutions mostly focus on fraud detection accuracy and ignore financial considerations. Also, the highly effective manual review process is overlooked. First, I propose Profit Optimizing Neural Risk Manager (PONRM), a selective classifier that (a) constitutes optimal collaboration between machine learning models and human expertise under industrial constraints, (b) is cost and profit sensitive. I suggest directions on how to characterize fraudulent behavior and assess the risk of a transaction. I show that my framework outperforms cost-sensitive and cost-insensitive baselines on three real-world merchant datasets. While PONRM is able to work with many supervised learners and obtain convincing results, utilizing probability outputs directly from the trained model itself can pose problems, especially in deep learning as softmax output is not a true uncertainty measure. This phenomenon, and the wide and rapid adoption of deep learning by practitioners brought unintended consequences in many situations such as in the infamous case of Google Photos' racist image recognition algorithm; thus, necessitated the utilization of the quantified uncertainty for each prediction. There have been recent efforts towards quantifying uncertainty in conventional deep learning methods (e.g., dropout as Bayesian approximation); however, their optimal use in decision making is often overlooked and understudied. Thus, I present a mixed-integer programming framework for selective classification called MIPSC, that investigates and combines model uncertainty and predictive mean to identify optimal classification and rejection regions. I also extend this framework to cost-sensitive settings (MIPCSC) and focus on the critical real-world problem, online fraud management and show that my approach outperforms industry standard methods significantly for online fraud management in real-world settings.
Date Created
2019
Agent

VIPLE Extensions in Robotic Simulation, Quadrotor Control Platform, and Machine Learning for Multirotor Activity Recognition

156904-Thumbnail Image.png
Description
Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new,

Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process of generating Inertial Movement Unit (IMU) data from multirotor flight sessions, training a linear classifier, and applying said classifier to solve Multi-rotor Activity Recognition (MAR) problems in an online lab setting. MAR labs leverage cloud computing and data storage technologies to host a versatile environment capable of logging, orchestrating, and visualizing the solution for an MAR problem through a user interface. MAR labs extends Arizona State University’s Visual IoT/Robotics Programming Language Environment (VIPLE) as a control platform for multi-rotors used in data collection. VIPLE is a platform developed for teaching computational thinking, visual programming, Internet of Things (IoT) and robotics application development. As a part of this education platform, this work also develops a 3D simulator capable of simulating the programmable behaviors of a robot within a maze environment and builds a physical quadrotor for use in MAR lab experiments.
Date Created
2018
Agent

Constructing Knowledge Graph for Cybersecurity Education

156851-Thumbnail Image.png
Description
There currently exist various challenges in learning cybersecuirty knowledge, along with a shortage of experts in the related areas, while the demand for such talents keeps growing. Unlike other topics related to the computer system such as computer architecture and

There currently exist various challenges in learning cybersecuirty knowledge, along with a shortage of experts in the related areas, while the demand for such talents keeps growing. Unlike other topics related to the computer system such as computer architecture and computer network, cybersecurity is a multidisciplinary topic involving scattered technologies, which yet remains blurry for its future direction. Constructing a knowledge graph (KG) in cybersecurity education is a first step to address the challenges and improve the academic learning efficiency.

With the advancement of big data and Natural Language Processing (NLP) technologies, constructing large KGs and mining concepts, from unstructured text by using learning methodologies, become possible. The NLP-based KG with the semantic similarity between concepts has brought inspiration to different industrial applications, yet far from completeness in the domain expertise, including education in computer science related fields.

In this research work, a KG in cybersecurity area has been constructed using machine-learning-based word embedding (i.e., mapping a word or phrase onto a vector of low dimensions) and hyperlink-based concept mining from the full dataset of words available using the latest Wikipedia dump. The different approaches in corpus training are compared and the performance based on different similarity tasks is evaluated. As a result, the best performance of trained word vectors has been applied, which is obtained by using Skip-Gram model of Word2Vec, to construct the needed KG. In order to improve the efficiency of knowledge learning, a web-based front-end is constructed to visualize the KG, which provides the convenience in browsing related materials and searching for cybersecurity-related concepts and independence relations.
Date Created
2018
Agent

Analysis and Management of Security State for Large-Scale Data Center Networks

156850-Thumbnail Image.png
Description
With the increasing complexity of computing systems and the rise in the number of risks and vulnerabilities, it is necessary to provide a scalable security situation awareness tool to assist the system administrator in protecting the critical assets, as well

With the increasing complexity of computing systems and the rise in the number of risks and vulnerabilities, it is necessary to provide a scalable security situation awareness tool to assist the system administrator in protecting the critical assets, as well as managing the security state of the system. There are many methods to provide security states' analysis and management. For instance, by using a Firewall to manage the security state, and/or a graphical analysis tools such as attack graphs for analysis.

Attack Graphs are powerful graphical security analysis tools as they provide a visual representation of all possible attack scenarios that an attacker may take to exploit system vulnerabilities. The attack graph's scalability, however, is a major concern for enumerating all possible attack scenarios as it is considered an NP-complete problem. There have been many research work trying to come up with a scalable solution for the attack graph. Nevertheless, non-practical attack graph based solutions have been used in practice for realtime security analysis.

In this thesis, a new framework, namely 3S (Scalable Security Sates) analysis framework is proposed, which present a new approach of utilizing Software-Defined Networking (SDN)-based distributed firewall capabilities and the concept of stateful data plane to construct scalable attack graphs in near-realtime, which is a practical approach to use attack graph for realtime security decisions. The goal of the proposed work is to control reachability information between different datacenter segments to reduce the dependencies among vulnerabilities and restrict the attack graph analysis in a relative small scope. The proposed framework is based on SDN's programmable capabilities to adjust the distributed firewall policies dynamically according to security situations during the running time. It apply white-list-based security policies to limit the attacker's capability from moving or exploiting different segments by only allowing uni-directional vulnerability dependency links between segments. Specifically, several test cases will be presented with various attack scenarios and analyze how distributed firewall and stateful SDN data plan can significantly reduce the security states construction and analysis. The proposed approach proved to achieve a percentage of improvement over 61% in comparison with prior modules were SDN and distributed firewall are not in use.
Date Created
2018
Agent

An Approach to QoS-based Task Distribution in Edge Computing Networks for IoT Applications

156819-Thumbnail Image.png
Description
Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices,

Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices, it is common to offload tasks of various applications requiring substantial computing resources to computing systems with sufficient computing resources, such as servers, cloud systems, and/or data centers for processing. However, this offloading method suffers from both high latency and network congestion in the IoT infrastructures.

Recently edge computing has emerged to reduce the negative impacts of tasks offloading to remote computing systems. As edge computing is in close proximity to IoT devices, it can reduce the latency of task offloading and reduce network congestion. Yet, edge computing has its drawbacks, such as the limited computing resources of some edge computing devices and the unbalanced loads among these devices. In order to effectively explore the potential of edge computing to support IoT applications, it is necessary to have efficient task management and load balancing in edge computing networks.

In this dissertation research, an approach is presented to periodically distributing tasks within the edge computing network while satisfying the quality-of-service (QoS) requirements of tasks. The QoS requirements include task completion deadline and security requirement. The approach aims to maximize the number of tasks that can be accommodated in the edge computing network, with consideration of tasks’ priorities. The goal is achieved through the joint optimization of the computing resource allocation and network bandwidth provisioning. Evaluation results show the improvement of the approach in increasing the number of tasks that can be accommodated in the edge computing network and the efficiency in resource utilization.
Date Created
2018
Agent

Cyber Attacks Detection and Mitigation in SDN Environments

156799-Thumbnail Image.png
Description
Cyber-systems and networks are the target of different types of cyber-threats and attacks, which are becoming more common, sophisticated, and damaging. Those attacks can vary in the way they are performed. However, there are similar strategies

and tactics often used because

Cyber-systems and networks are the target of different types of cyber-threats and attacks, which are becoming more common, sophisticated, and damaging. Those attacks can vary in the way they are performed. However, there are similar strategies

and tactics often used because they are time-proven to be effective. The motivations behind cyber-attacks play an important role in designating how attackers plan and proceed to achieve their goals. Generally, there are three categories of motivation

are: political, economical, and socio-cultural motivations. These indicate that to defend against possible attacks in an enterprise environment, it is necessary to consider what makes such an enterprise environment a target. That said, we can understand

what threats to consider and how to deploy the right defense system. In other words, detecting an attack depends on the defenders having a clear understanding of why they become targets and what possible attacks they should expect. For instance,

attackers may preform Denial of Service (DoS), or even worse Distributed Denial of Service (DDoS), with intention to cause damage to targeted organizations and prevent legitimate users from accessing their services. However, in some cases, attackers are very skilled and try to hide in a system undetected for a long period of time with the incentive to steal and collect data rather than causing damages.

Nowadays, not only the variety of attack types and the way they are launched are important. However, advancement in technology is another factor to consider. Over the last decades, we have experienced various new technologies. Obviously, in the beginning, new technologies will have their own limitations before they stand out. There are a number of related technical areas whose understanding is still less than satisfactory, and in which long-term research is needed. On the other hand, these new technologies can boost the advancement of deploying security solutions and countermeasures when they are carefully adapted. That said, Software Defined Networking i(SDN), its related security threats and solutions, and its adaption in enterprise environments bring us new chances to enhance our security solutions. To reach the optimal level of deploying SDN technology in enterprise environments, it is important to consider re-evaluating current deployed security solutions in traditional networks before deploying them to SDN-based infrastructures. Although DDoS attacks are a bit sinister, there are other types of cyber-threats that are very harmful, sophisticated, and intelligent. Thus, current security defense solutions to detect DDoS cannot detect them. These kinds of attacks are complex, persistent, and stealthy, also referred to Advanced Persistent Threats (APTs) which often leverage the bot control and remotely access valuable information. APT uses multiple stages to break into a network. APT is a sort of unseen, continuous and long-term penetrative network and attackers can bypass the existing security detection systems. It can modify and steal the sensitive data as well as specifically cause physical damage the target system. In this dissertation, two cyber-attack motivations are considered: sabotage, where the motive is the destruction; and information theft, where attackers aim to acquire invaluable information (customer info, business information, etc). I deal with two types of attacks (DDoS attacks and APT attacks) where DDoS attacks are classified under sabotage motivation category, and the APT attacks are classified under information theft motivation category. To detect and mitigate each of these attacks, I utilize the ease of programmability in SDN and its great platform for implementation, dynamic topology changes, decentralized network management, and ease of deploying security countermeasures.
Date Created
2018
Agent

A Proactive Approach to Detect IoT Based Flooding Attacks by Using Software Defined Networks and Manufacturer Usage Descriptions

156698-Thumbnail Image.png
Description
The advent of the Internet of Things (IoT) and its increasing appearances in

Small Office/Home Office (SOHO) networks pose a unique issue to the availability

and health of the Internet at large. Many of these devices are shipped insecurely, with

poor default user

The advent of the Internet of Things (IoT) and its increasing appearances in

Small Office/Home Office (SOHO) networks pose a unique issue to the availability

and health of the Internet at large. Many of these devices are shipped insecurely, with

poor default user and password credentials and oftentimes the general consumer does

not have the technical knowledge of how they may secure their devices and networks.

The many vulnerabilities of the IoT coupled with the immense number of existing

devices provide opportunities for malicious actors to compromise such devices and

use them in large scale distributed denial of service attacks, preventing legitimate

users from using services and degrading the health of the Internet in general.

This thesis presents an approach that leverages the benefits of an Internet Engineering

Task Force (IETF) proposed standard named Manufacturer Usage Descriptions,

that is used in conjunction with the concept of Software Defined Networks

(SDN) in order to detect malicious traffic generated from IoT devices suspected of

being utilized in coordinated flooding attacks. The approach then works towards

the ability to detect these attacks at their sources through periodic monitoring of

preemptively permitted flow rules and determining which of the flows within the permitted

set are misbehaving by using an acceptable traffic range using Exponentially

Weighted Moving Averages (EWMA).
Date Created
2018
Agent