A Blockchain-Based Approach to Developing Scalable and Auditable E-Voting Systems Without Requiring a Trustworthy Central Authority

161862-Thumbnail Image.png
Description
The purpose of an election is for the voice of the voters to be heard. All the participants in an election must be able to trust that the result of an election is actually the opinion of the people, unaltered

The purpose of an election is for the voice of the voters to be heard. All the participants in an election must be able to trust that the result of an election is actually the opinion of the people, unaltered by anything or anyone that may be trying to sway the vote. In the voting process, any "black boxes" or secrets can lead to mistrust in the system. In this thesis, an approach is developed for an electronic voting framework that is transparent, auditable, and scalable, making it trustworthy and usable for a wide-scale election. Based on my analysis, linkable ring signatures are utilized in order to preserve voter privacy while ensuring that a corrupt authenticating authority could not sway the vote. A hierarchical blockchain framework is presented to make ring signatures a viable signature scheme even when working with large populations. The solution is evaluated for compliance with secure voting requirements and scalability.
Date Created
2021
Agent

An Approach to QoS-based Task Distribution in Edge Computing Networks for IoT Applications

156819-Thumbnail Image.png
Description
Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices,

Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices, it is common to offload tasks of various applications requiring substantial computing resources to computing systems with sufficient computing resources, such as servers, cloud systems, and/or data centers for processing. However, this offloading method suffers from both high latency and network congestion in the IoT infrastructures.

Recently edge computing has emerged to reduce the negative impacts of tasks offloading to remote computing systems. As edge computing is in close proximity to IoT devices, it can reduce the latency of task offloading and reduce network congestion. Yet, edge computing has its drawbacks, such as the limited computing resources of some edge computing devices and the unbalanced loads among these devices. In order to effectively explore the potential of edge computing to support IoT applications, it is necessary to have efficient task management and load balancing in edge computing networks.

In this dissertation research, an approach is presented to periodically distributing tasks within the edge computing network while satisfying the quality-of-service (QoS) requirements of tasks. The QoS requirements include task completion deadline and security requirement. The approach aims to maximize the number of tasks that can be accommodated in the edge computing network, with consideration of tasks’ priorities. The goal is achieved through the joint optimization of the computing resource allocation and network bandwidth provisioning. Evaluation results show the improvement of the approach in increasing the number of tasks that can be accommodated in the edge computing network and the efficiency in resource utilization.
Date Created
2018
Agent

Moving Target Defense for Web Applications

156185-Thumbnail Image.png
Description
Web applications continue to remain as the most popular method of interaction for businesses over the Internet. With it's simplicity of use and management, they often function as the "front door" for many companies. As such, they are a critical

Web applications continue to remain as the most popular method of interaction for businesses over the Internet. With it's simplicity of use and management, they often function as the "front door" for many companies. As such, they are a critical component of the security ecosystem as vulnerabilities present in these systems could potentially allow malicious users access to sensitive business and personal data.

The inherent nature of web applications enables anyone to access them anytime and anywhere, this includes any malicious actors looking to exploit vulnerabilities present in the web application. In addition, the static configurations of these web applications enables attackers the opportunity to perform reconnaissance at their leisure, increasing their success rate by allowing them time to discover information on the system. On the other hand, defenders are often at a disadvantage as they do not have the same temporal opportunity that attackers possess in order to perform counter-reconnaissance. Lastly, the unchanging nature of web applications results in undiscovered vulnerabilities to remain open for exploitation, requiring developers to adopt a reactive approach that is often delayed or to anticipate and prepare for all possible attacks which is often cost-prohibitive.

Moving Target Defense (MTD) seeks to remove the attackers' advantage by reducing the information asymmetry between the attacker and defender. This research explores the concept of MTD and the various methods of applying MTD to secure Web Applications. In particular, MTD concepts are applied to web applications by implementing an automated application diversifier that aims to mitigate specific classes of web application vulnerabilities and exploits. Evaluation is done using two open source web applications to determine the effectiveness of the MTD implementation. Though developed for the chosen applications, the automation process can be customized to fit a variety of applications.
Date Created
2018
Agent

An Approach to Recovery of Critical Data of Smart Cities Using Blockchain

156040-Thumbnail Image.png
Description
Smart cities are the next wave of rapid expansion of Internet of Things (IoT). A smart city is a designation given to a city that incorporates information and communication technologies (ICT) to enhance the quality and performance of urban services,

Smart cities are the next wave of rapid expansion of Internet of Things (IoT). A smart city is a designation given to a city that incorporates information and communication technologies (ICT) to enhance the quality and performance of urban services, such as energy, transportation, healthcare, communications, entertainments, education, e-commerce, businesses, city management, and utilities, to reduce resource consumption, wastage and overall costs. The overarching aim of a smart city is to enhance the quality of living for its residents and businesses, through technology. In a large ecosystem, like a smart city, many organizations and companies collaborate with the smart city government to improve the smart city. These entities may need to store and share critical data with each other. A smart city has several thousands of smart devices and sensors deployed across the city. Storing critical data in a secure and scalable manner is an important issue in a smart city. While current cloud-based services, like Splunk and ELK (Elasticsearch-Logstash-Kibana), offer a centralized view and control over the IT operations of these smart devices, it is still prone to insider attacks, data tampering, and rogue administrator problems. In this thesis, we present an approach using blockchain to recovering critical data from unauthorized modifications. We use extensive simulations based on complex adaptive system theory, for evaluation of our approach. Through mathematical proof we proved that the approach always detects an unauthorized modification of critical data.
Date Created
2017
Agent

An Approach to Software Development for Continuous Authentication of Smart Wearable Device Users

155858-Thumbnail Image.png
Description
With the recent expansion in the use of wearable technology, a large number of users access personal data with these smart devices. The consumer market of wearables includes smartwatches, health and fitness bands, and gesture control armbands. These smart devices

With the recent expansion in the use of wearable technology, a large number of users access personal data with these smart devices. The consumer market of wearables includes smartwatches, health and fitness bands, and gesture control armbands. These smart devices enable users to communicate with each other, control other devices, relax and work out more effectively. As part of their functionality, these devices store, transmit, and/or process sensitive user personal data, perhaps biological and location data, making them an abundant source of confidential user information. Thus, prevention of unauthorized access to wearables is necessary. In fact, it is important to effectively authenticate users to prevent intentional misuse or alteration of individual data. Current authentication methods for the legitimate users of smart wearable devices utilize passcodes, and graphical pattern based locks. These methods have the following problems: (1) passcodes can be stolen or copied, (2) they depend on conscious user inputs, which can be undesirable to a user, (3) they authenticate the user only at the beginning of the usage session, and (4) they do not consider user behavior or they do not adapt to evolving user behavior.

In this thesis, an approach is presented for developing software for continuous authentication of the legitimate user of a smart wearable device. With this approach, the legitimate user of a smart wearable device can be authenticated based on the user's behavioral biometrics in the form of motion gestures extracted from the embedded sensors of the smart wearable device. The continuous authentication of this approach is accomplished by adapting the authentication to user's gesture pattern changes. This approach is demonstrated by using two comprehensive datasets generated by two research groups, and it is shown that this approach achieves better performance than existing methods.
Date Created
2017
Agent

An adaptive approach to securing ubiquitous smart devices in IoT environment with probabilistic user behavior prediction

155149-Thumbnail Image.png
Description
Cyber systems, including IoT (Internet of Things), are increasingly being used ubiquitously to vastly improve the efficiency and reduce the cost of critical application areas, such as finance, transportation, defense, and healthcare. Over the past two decades, computing efficiency and

Cyber systems, including IoT (Internet of Things), are increasingly being used ubiquitously to vastly improve the efficiency and reduce the cost of critical application areas, such as finance, transportation, defense, and healthcare. Over the past two decades, computing efficiency and hardware cost have dramatically been improved. These improvements have made cyber systems omnipotent, and control many aspects of human lives. Emerging trends in successful cyber system breaches have shown increasing sophistication in attacks and that attackers are no longer limited by resources, including human and computing power. Most existing cyber defense systems for IoT systems have two major issues: (1) they do not incorporate human user behavior(s) and preferences in their approaches, and (2) they do not continuously learn from dynamic environment and effectively adapt to thwart sophisticated cyber-attacks. Consequently, the security solutions generated may not be usable or implementable by the user(s) thereby drastically reducing the effectiveness of these security solutions.

In order to address these major issues, a comprehensive approach to securing ubiquitous smart devices in IoT environment by incorporating probabilistic human user behavioral inputs is presented. The approach will include techniques to (1) protect the controller device(s) [smart phone or tablet] by continuously learning and authenticating the legitimate user based on the touch screen finger gestures in the background, without requiring users’ to provide their finger gesture inputs intentionally for training purposes, and (2) efficiently configure IoT devices through controller device(s), in conformance with the probabilistic human user behavior(s) and preferences, to effectively adapt IoT devices to the changing environment. The effectiveness of the approach will be demonstrated with experiments that are based on collected user behavioral data and simulations.
Date Created
2016
Agent

Centralized and decentralized methods of efficient resource allocation in cloud computing

155138-Thumbnail Image.png
Description
Resource allocation in cloud computing determines the allocation of computer and network resources of service providers to service requests of cloud users for meeting the cloud users' service requirements. The efficient and effective resource allocation determines the success of cloud

Resource allocation in cloud computing determines the allocation of computer and network resources of service providers to service requests of cloud users for meeting the cloud users' service requirements. The efficient and effective resource allocation determines the success of cloud computing. However, it is challenging to satisfy objectives of all service providers and all cloud users in an unpredictable environment with dynamic workload, large shared resources and complex policies to manage them.

Many studies propose to use centralized algorithms for achieving optimal solutions for resource allocation. However, the centralized algorithms may encounter the scalability problem to handle a large number of service requests in a realistically satisfactory time. Hence, this dissertation presents two studies. One study develops and tests heuristics of centralized resource allocation to produce near-optimal solutions in a scalable manner. Another study looks into decentralized methods of performing resource allocation.

The first part of this dissertation defines the resource allocation problem as a centralized optimization problem in Mixed Integer Programming (MIP) and obtains the optimal solutions for various resource-service problem scenarios. Based on the analysis of the optimal solutions, various heuristics are designed for efficient resource allocation. Extended experiments are conducted with larger numbers of user requests and service providers for performance evaluation of the resource allocation heuristics. Experimental results of the resource allocation heuristics show the comparable performance of the heuristics to the optimal solutions from solving the optimization problem. Moreover, the resource allocation heuristics demonstrate better computational efficiency and thus scalability than solving the optimization problem.

The second part of this dissertation looks into elements of service provider-user coordination first in the formulation of the centralized resource allocation problem in MIP and then in the formulation of the optimization problem in a decentralized manner for various problem cases. By examining differences between the centralized, optimal solutions and the decentralized solutions for those problem cases, the analysis of how the decentralized service provider-user coordination breaks down the optimal solutions is performed. Based on the analysis, strategies of decentralized service provider-user coordination are developed.
Date Created
2016
Agent

Optimization for resource-constrained wireless networks

151498-Thumbnail Image.png
Description
Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on

Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on optimization for resource-constrained wireless networks, and study two fundamental resource-allocation problems: 1) distributed routing optimization and 2) anypath routing optimization. The study on the distributed routing optimization problem is composed of two main thrusts, targeted at understanding distributed routing and resource optimization for multihop wireless networks. The first thrust is dedicated to understanding the impact of full-duplex transmission on wireless network resource optimization. We propose two provably good distributed algorithms to optimize the resources in a full-duplex wireless network. We prove their optimality and also provide network status analysis using dual space information. The second thrust is dedicated to understanding the influence of network entity load constraints on network resource allocation and routing computation. We propose a provably good distributed algorithm to allocate wireless resources. In addition, we propose a new subgradient optimization framework, which can provide findgrained convergence, optimality, and dual space information at each iteration. This framework can provide a useful theoretical foundation for many networking optimization problems. The study on the anypath routing optimization problem is composed of two main thrusts. The first thrust is dedicated to understanding the computational complexity of multi-constrained anypath routing and designing approximate solutions. We prove that this problem is NP-hard when the number of constraints is larger than one. We present two polynomial time K-approximation algorithms. One is a centralized algorithm while the other one is a distributed algorithm. For the second thrust, we study directional anypath routing and present a cross-layer design of MAC and routing. For the MAC layer, we present a directional anycast MAC. For the routing layer, we propose two polynomial time routing algorithms to compute directional anypaths based on two antenna models, and prove their ptimality based on the packet delivery ratio metric.
Date Created
2013
Agent

Confidentiality protection of user data and adaptive resource allocation for managing multiple workflow performance in service-based systems

150987-Thumbnail Image.png
Description
In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time
Date Created
2012
Agent

A co-design modeling methodology for simulation of service oriented computing systems

150453-Thumbnail Image.png
Description
The adoption of the Service Oriented Architecture (SOA) as the foundation for developing a new generation of software systems - known as Service Based Software Systems (SBS), poses new challenges in system design. While simulation as a methodology serves a

The adoption of the Service Oriented Architecture (SOA) as the foundation for developing a new generation of software systems - known as Service Based Software Systems (SBS), poses new challenges in system design. While simulation as a methodology serves a principal role in design, there is a growing recognition that simulation of SBS requires modeling capabilities beyond those that are developed for the traditional distributed software systems. In particular, while different component-based modeling approaches may lend themselves to simulating the logical process flows in Service Oriented Computing (SOC) systems, they are inadequate in terms of supporting SOA-compliant modeling. Furthermore, composite services must satisfy multiple QoS attributes under constrained service reconfigurations and hardware resources. A key desired capability, therefore, is to model and simulate not only the services consistent with SOA concepts and principles, but also the hardware and network components on which services must execute on. In this dissertation, SOC-DEVS - a novel co-design modeling methodology that enables simulation of software and hardware aspects of SBS for early architectural design evaluation is developed. A set of abstractions representing important service characteristics and service relationships are modeled. The proposed software/hardware co-design simulation capability is introduced into the DEVS-Suite simulator. Exemplar simulation models of a communication intensive Voice Communication System and a computation intensive Encryption System are developed and then validated using data from an existing real system. The applicability of the SOC-DEVS methodology is demonstrated in a simulation testbed aimed at facilitating the design & development of SBS. Furthermore, the simulation testbed is extended by integrating an existing prototype monitoring and adaptation system with the simulator to support basic experimentation towards design & development of Adaptive SBS.
Date Created
2011
Agent