Explaining the Vulnerabilities of Machine Learning through Visual Analytics

189385-Thumbnail Image.png
Description
Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and

Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of model vulnerabilities. The complexity of machine learning models, along with the extensive data sets they analyze, can result in unpredictable and unintended outcomes. Model vulnerabilities may manifest due to errors in data input, algorithm design, or model deployment, which can have significant implications for both individuals and society. To prevent such negative outcomes, it is imperative to identify model vulnerabilities at an early stage in the development process. This will aid in guaranteeing the integrity, dependability, and safety of the models, thus mitigating potential risks and enabling the full potential of these technologies to be realized. However, enumerating vulnerabilities can be challenging due to the complexity of the real-world environment. Visual analytics, situated at the intersection of human-computer interaction, computer graphics, and artificial intelligence, offers a promising approach for achieving high interpretability of complex black-box models, thus reducing the cost of obtaining insights into potential vulnerabilities of models. This research is devoted to designing novel visual analytics methods to support the identification and analysis of model vulnerabilities. Specifically, generalizable visual analytics frameworks are instantiated to explore vulnerabilities in machine learning models concerning security (adversarial attacks and data perturbation) and fairness (algorithmic bias). In the end, a visual analytics approach is proposed to enable domain experts to explain and diagnose the model improvement of addressing identified vulnerabilities of machine learning models in a human-in-the-loop fashion. The proposed methods hold the potential to enhance the security and fairness of machine learning models deployed in critical real-world applications.
Date Created
2023
Agent

Representation Learning for Trustworthy AI

187381-Thumbnail Image.png
Description
Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL)

Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL) methods which present challenges for human experts to design and evaluate such models with respect to privacy, fairness, and robustness. Recent examination of DL models reveals that representations may include information that could lead to privacy violations, unfairness, and robustness issues. This results in AI systems that are potentially untrustworthy from a socio-technical standpoint. Trustworthiness in AI is defined by a set of model properties such as non-discriminatory bias, protection of users’ sensitive attributes, and lawful decision-making. The characteristics of trustworthy AI can be grouped into three categories: Reliability, Resiliency, and Responsibility. Past research has shown that the successful integration of an AI model depends on its trustworthiness. Thus it is crucial for organizations and researchers to build trustworthy AI systems to facilitate the seamless integration and adoption of intelligent technologies. The main issue with existing AI systems is that they are primarily trained to improve technical measures such as accuracy on a specific task but are not considerate of socio-technical measures. The aim of this dissertation is to propose methods for improving the trustworthiness of AI systems through representation learning. DL models’ representations contain information about a given input and can be used for tasks such as detecting fake news on social media or predicting the sentiment of a review. The findings of this dissertation significantly expand the scope of trustworthy AI research and establish a new paradigm for modifying data representations to balance between properties of trustworthy AI. Specifically, this research investigates multiple techniques such as reinforcement learning for understanding trustworthiness in users’ privacy, fairness, and robustness in classification tasks like cyberbullying detection and fake news detection. Since most social measures in trustworthy AI cannot be used to fine-tune or train an AI model directly, the main contribution of this dissertation lies in using reinforcement learning to alter an AI system’s behavior based on non-differentiable social measures.
Date Created
2023
Agent

A Visual Analytics Workflow for Detecting Transition Regions in Large Scale Molecular Dynamics Simulations

171880-Thumbnail Image.png
Description
Molecular Dynamics (MD) simulations are ubiquitous throughout the physical sci-ences; they are critical in understanding how particle structures evolve over time given a particular energy function. A software package called ParSplice introduced a new method to generate these simulations in parallel that

Molecular Dynamics (MD) simulations are ubiquitous throughout the physical sci-ences; they are critical in understanding how particle structures evolve over time given a particular energy function. A software package called ParSplice introduced a new method to generate these simulations in parallel that has significantly inflated their length. Typically, simulations are short discrete Markov chains, only captur- ing a few microseconds of a particle’s behavior and containing tens of thousands of transitions between states; in contrast, a typical ParSplice simulation can be as long as a few milliseconds, containing tens of millions of transitions. Naturally, sifting through data of this size is impossible by hand, and there are a number of visualiza- tion systems that provide comprehensive and intuitive analyses of particle structures throughout MD simulations. However, no visual analytics systems have been built that can manage the simulations that ParSplice produces. To analyze these large data-sets, I built a visual analytics system that provides multiple coordinated views that simultaneously describe the data temporally, within its structural context, and based on its properties. The system provides fluid and powerful user interactions regardless of the size of the data, allowing the user to drill down into the data-set to get detailed insights, as well as run and save various calculations, most notably the Nudged Elastic Band method. The system also allows the comparison of multiple trajectories, revealing more information about the general behavior of particles at different temperatures, energy states etc.
Date Created
2022
Agent

LEARNING FREE ENERGY PATHWAYS THROUGH DEEP LEARNING

Description

The focus of my honors thesis is to find ways to use deep learning in tandem with tools in statistical mechanics to derive new ways to solve problems in biophysics. More specifically, I’ve been interested in finding transition pathways between

The focus of my honors thesis is to find ways to use deep learning in tandem with tools in statistical mechanics to derive new ways to solve problems in biophysics. More specifically, I’ve been interested in finding transition pathways between two known states of a biomolecule. This is because understanding the mechanisms in which proteins fold and ligands bind is crucial to creating new medicines and understanding biological processes. In this thesis, I work with individuals in the Singharoy lab to develop a formulation to utilize reinforcement learning and sampling-based robotics planning to derive low free energy transition pathways between two known states. Our formulation uses Jarzynski’s equality and the stiff-spring approximation to obtain point estimates of energy, and construct an informed path search with atomistic resolution. At the core of this framework, is our first ever attempt we use a policy driven adaptive steered molecular dynamics (SMD) to control our molecular dynamics simulations. We show that both the reinforcement learning (RL) and robotics planning realization of the RL-guided framework can solve for pathways on toy analytical surfaces and alanine dipeptide.

Date Created
2022-12
Agent

Constructing a Visualization Dashboard to Improve Educational Standards in Arizona Legislative Districts

148313-Thumbnail Image.png
Description

Education has been at the forefront of many issues in Arizona over the past several years with concerns over lack of funding sparking the Red for Ed movement. However, despite the push for educational change, there remain many barriers to

Education has been at the forefront of many issues in Arizona over the past several years with concerns over lack of funding sparking the Red for Ed movement. However, despite the push for educational change, there remain many barriers to education including a lack of visibility for how Arizona schools are performing at a legislative district level. While there are sources of information released at a school district level, many of these are limited and can become obscure to legislators when such school districts lie on the boundary between 2 different legislative districts. Moreover, much of this information is in the form of raw spreadsheets and is often fragmented between government websites and educational organizations. As such, a visualization dashboard that clearly identifies schools and their relative performance within each legislative district would be an extremely valuable tool to legislative bodies and the Arizona public. Although this dashboard and research are rough drafts of a larger concept, they would ideally increase transparency regarding public information about these districts and allow legislators to utilize the dashboard as a tool for greater understanding and more effective policymaking.

Date Created
2021-05
Agent

Modeling Cascading Network Disruptions under Uncertainty For Managing Hurricane Evacuation

158602-Thumbnail Image.png
Description
Short-notice disasters such as hurricanes involve uncertainties in many facets, from the time of its occurrence to its impacts’ magnitude. Failure to incorporate these uncertainties can affect the effectiveness of the emergency responses. In the case of a hurricane event,

Short-notice disasters such as hurricanes involve uncertainties in many facets, from the time of its occurrence to its impacts’ magnitude. Failure to incorporate these uncertainties can affect the effectiveness of the emergency responses. In the case of a hurricane event, uncertainties and corresponding impacts during a storm event can quickly cascade. Over the past decades, various storm forecast models have been developed to predict the storm uncertainties; however, access to the usage of these models is limited. Hence, as the first part of this research, a data-driven simulation model is developed with aim to generate spatial-temporal storm predicted hazards for each possible hurricane track modeled. The simulation model identifies a means to represent uncertainty in storm’s movement and its associated potential hazards in the form of probabilistic scenarios tree where each branch is associated with scenario-level storm track and weather profile. Storm hazards, such as strong winds, torrential rain, and storm surges, can inflict significant damage on the road network and affect the population’s ability to move during the storm event. A cascading network failure algorithm is introduced in the second part of the research. The algorithm takes the scenario-level storm hazards to predict uncertainties in mobility states over the storm event. In the third part of the research, a methodology is proposed to generate a sequence of actions that simultaneously solve the evacuation flow scheduling and suggested routes which minimize the total flow time, or the makespan, for the evacuation process from origins to destinations in the resulting stochastic time-dependent network. The methodology is implemented for the 2017 Hurricane Irma case study to recommend an evacuation policy for Manatee County, FL. The results are compared with evacuation plans for assumed scenarios; the research suggests that evacuation recommendations that are based on single scenarios reduce the effectiveness of the evacuation procedure. The overall contributions of the research presented here are new methodologies to: (1) predict and visualize the spatial-temporal impacts of an oncoming storm event, (2) predict uncertainties in the impacts to transportation infrastructure and mobility, and (3) determine the quickest evacuation schedule and routes under the uncertainties within the resulting stochastic transportation networks.
Date Created
2020
Agent

Understanding Disinformation: Learning with Weak Social Supervision

158566-Thumbnail Image.png
Description
Social media has become an important means of user-centered information sharing and communications in a gamut of domains, including news consumption, entertainment, marketing, public relations, and many more. The low cost, easy access, and rapid dissemination of information on social

Social media has become an important means of user-centered information sharing and communications in a gamut of domains, including news consumption, entertainment, marketing, public relations, and many more. The low cost, easy access, and rapid dissemination of information on social media draws a large audience but also exacerbate the wide propagation of disinformation including fake news, i.e., news with intentionally false information. Disinformation on social media is growing fast in volume and can have detrimental societal effects. Despite the importance of this problem, our understanding of disinformation in social media is still limited. Recent advancements of computational approaches on detecting disinformation and fake news have shown some early promising results. Novel challenges are still abundant due to its complexity, diversity, dynamics, multi-modality, and costs of fact-checking or annotation.

Social media data opens the door to interdisciplinary research and allows one to collectively study large-scale human behaviors otherwise impossible. For example, user engagements over information such as news articles, including posting about, commenting on, or recommending the news on social media, contain abundant rich information. Since social media data is big, incomplete, noisy, unstructured, with abundant social relations, solely relying on user engagements can be sensitive to noisy user feedback. To alleviate the problem of limited labeled data, it is important to combine contents and this new (but weak) type of information as supervision signals, i.e., weak social supervision, to advance fake news detection.

The goal of this dissertation is to understand disinformation by proposing and exploiting weak social supervision for learning with little labeled data and effectively detect disinformation via innovative research and novel computational methods. In particular, I investigate learning with weak social supervision for understanding disinformation with the following computational tasks: bringing the heterogeneous social context as auxiliary information for effective fake news detection; discovering explanations of fake news from social media for explainable fake news detection; modeling multi-source of weak social supervision for early fake news detection; and transferring knowledge across domains with adversarial machine learning for cross-domain fake news detection. The findings of the dissertation significantly expand the boundaries of disinformation research and establish a novel paradigm of learning with weak social supervision that has important implications in broad applications in social media.
Date Created
2020
Agent

Input-Elicitation Methods for Crowdsourced Human Computation

131386-Thumbnail Image.png
Description
Collecting accurate collective decisions via crowdsourcing
is challenging due to cognitive biases, varying
worker expertise, and varying subjective scales. This
work investigates new ways to determine collective decisions
by prompting users to provide input in multiple
formats. A crowdsourced task is created that aims
to determine

Collecting accurate collective decisions via crowdsourcing
is challenging due to cognitive biases, varying
worker expertise, and varying subjective scales. This
work investigates new ways to determine collective decisions
by prompting users to provide input in multiple
formats. A crowdsourced task is created that aims
to determine ground-truth by collecting information in
two different ways: rankings and numerical estimates.
Results indicate that accurate collective decisions can
be achieved with less people when ordinal and cardinal
information is collected and aggregated together
using consensus-based, multimodal models. We also
show that presenting users with larger problems produces
more valuable ordinal information, and is a more
efficient way to collect an aggregate ranking. As a result,
we suggest input-elicitation to be more widely considered
for future work in crowdsourcing and incorporated
into future platforms to improve accuracy and efficiency.
Date Created
2020-05
Agent

Composition of Geographic-Based Component Simulation Models

157996-Thumbnail Image.png
Description
Component simulation models, such as agent-based models, may depend on spatial data associated with geographic locations. Composition of such models can be achieved using a Geographic Knowledge Interchange Broker (GeoKIB) enabled with spatial-temporal data transformation functions, each of which is

Component simulation models, such as agent-based models, may depend on spatial data associated with geographic locations. Composition of such models can be achieved using a Geographic Knowledge Interchange Broker (GeoKIB) enabled with spatial-temporal data transformation functions, each of which is responsible for a set of interactions between two independent models. The use of autonomous interaction models allows model composition without alteration of the composed component models. An interaction model must handle differences in the spatial resolutions between models, in addition to differences in their temporal input/output data types and resolutions.

A generalized GeoKIB was designed that regulates unidirectional spatially-based interactions between composed models. Different input and output data types are used for the interaction model, depending on whether data transfer should be passive or active. Synchronization of time-tagged input/output values is made possible with the use of dependency on a discrete simulation clock. An algorithm supporting spatial conversion is developed to transform any two-dimensional geographic data map between different region specifications. Maps belonging to the composed models can have different regions, map cell sizes, or boundaries. The GeoKIB can be extended based on the model specifications to be composed and the target application domain.

Two separate, simplistic models were created to demonstrate model composition via the GeoKIB. An interaction model was created for each of the two directions the composed models interact. This exemplar is developed to demonstrate composition and simulation of geographic-based component models.
Date Created
2019
Agent

Proactive Identification of Cybersecurity Threats Using Online Sources

157857-Thumbnail Image.png
Description
Many existing applications of machine learning (ML) to cybersecurity are focused on detecting malicious activity already present in an enterprise. However, recent high-profile cyberattacks proved that certain threats could have been avoided. The speed of contemporary attacks along with the

Many existing applications of machine learning (ML) to cybersecurity are focused on detecting malicious activity already present in an enterprise. However, recent high-profile cyberattacks proved that certain threats could have been avoided. The speed of contemporary attacks along with the high costs of remediation incentivizes avoidance over response. Yet, avoidance implies the ability to predict - a notoriously difficult task due to high rates of false positives, difficulty in finding data that is indicative of future events, and the unexplainable results from machine learning algorithms.



In this dissertation, these challenges are addressed by presenting three artificial intelligence (AI) approaches to support prioritizing defense measures. The first two approaches leverage ML on cyberthreat intelligence data to predict if exploits are going to be used in the wild. The first work focuses on what data feeds are generated after vulnerability disclosures. The developed ML models outperform the current industry-standard method with F1 score more than doubled. Then, an approach to derive features about who generated the said data feeds is developed. The addition of these features increase recall by over 19% while maintaining precision. Finally, frequent itemset mining is combined with a variant of a probabilistic temporal logic framework to predict when attacks are likely to occur. In this approach, rules correlating malicious activity in the hacking community platforms with real-world cyberattacks are mined. They are then used in a deductive reasoning approach to generate predictions. The developed approach predicted unseen real-world attacks with an average increase in the value of F1 score by over 45%, compared to a baseline approach.
Date Created
2019
Agent