Improving the Trustworthiness of Electronic Voting Systems Using Blockchain

158018-Thumbnail Image.png
Description
Many researchers have seen the value blockchain can add to the field of voting and many protocols have been proposed to allow voting to be conducted in a way that takes advantage of blockchains distributed and immutable structure. While blockchains

Many researchers have seen the value blockchain can add to the field of voting and many protocols have been proposed to allow voting to be conducted in a way that takes advantage of blockchains distributed and immutable structure. While blockchains immutable structure can take the place of paper records in preventing tampering it by itself is insufficient to construct a trustworthy voting system with eligibility, privacy, verifiability, and fairness requirements. Many of the protocols which strive to keep voters votes confidential, but also allow for verifiability and eligibility requirements rely on either a blind signature provided by a central authority to provide compliance with these requirements or ring signatures to prove membership in the set of voters. A blind signature issued by a central authority introduces a potential vulnerability as it allows a corrupt central authority to pass a large number of forged ballots into the mix without any detection. Ring signatures on the other hand tend to be overly resource intensive to allow for practical usage in large voting sets. The research in this thesis focuses on improving the trustworthiness of electronic voting systems by providing possible ways of avoiding or detecting corrupt central authorities while still relying upon the benefits of efficiency the blind signature provides.
Date Created
2020
Agent

Software for Agent-Based Computational Economics

135230-Thumbnail Image.png
Description
Agent Based modeling has been used in computer science to simulate complex phenomena. The introduction of Agent Based Models into the field of economics (Agent Based Computational Economics ACE) is not new, however work on making model environments simpler to

Agent Based modeling has been used in computer science to simulate complex phenomena. The introduction of Agent Based Models into the field of economics (Agent Based Computational Economics ACE) is not new, however work on making model environments simpler to design for individuals without a background in computer science or computer engineering is a constantly evolving topic. The issue is a trade off of how much is handled by the framework and how much control the modeler has, as well as what tools exist to allow the user to develop insights from the behavior of the model. The solutions looked at in this thesis are the construction of a simplified grammar for model construction, the design of an economic based library to assist in ACE modeling, and examples of how to construct interactive models.
Date Created
2016-05
Agent