Modeling and control for vision based rear wheel drive robot and solving indoor SLAM problem using LIDAR

Description
To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed.

To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform

that can be used for conducting FAME research.

A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities.

The augmented vehicle (FreeSLAM Robot) costs less than $500 but offers the capability

of commercially available vehicles costing over $2000.

All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following

summarizes the key hardware demonstrations presented and analyzed:

(1)Cruise (v, ) control along a line,

(2) Cruise (v, ) control along a curve,

(3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle,

(4) Finish the track with camera pan tilt structure in minimum time,

(5) Finish the track without camera pan tilt structure in minimum time,

(6) Vision based tracking performance with different cruise speed vx,

(7) Vision based tracking performance with different camera fixed look-ahead distance L,

(8) Vision based tracking performance with different delay Td from vision subsystem,

(9) Manually remote controlled robot to perform indoor SLAM,

(10) Autonomously line guided robot to perform indoor SLAM.

For most cases, hardware data is compared with, and corroborated by, model based

simulation data. In short, the thesis uses low-cost self-designed rear-wheel

drive robot to demonstrate many capabilities that are critical in order to reach the

longer-term FAME goal.
Date Created
2016
Agent

Modeling, design and control of multiple low-cost robotic ground vehicles

154029-Thumbnail Image.png
Description
Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost)

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost) remote-control (RC) “toy” vehicles can be converted into intelligent multi-capability robotic-platforms for conducting FAME research. This is shown for two vehicle classes: (1) six differential-drive (DD) RC vehicles called Thunder Tumbler (DDTT) and (2) one rear-wheel drive (RWD) RC car called Ford F-150 (1:14 scale). Each DDTT-vehicle was augmented to provide a substantive suite of capabilities as summarized below (It should be noted, however, that only one DDTT-vehicle was augmented with an inertial measurement unit (IMU) and 2.4 GHz RC capability): (1) magnetic wheel-encoders/IMU for(dead-reckoning-based) inner-loop speed-control and outer-loop position-directional-control, (2) Arduino Uno microcontroller-board for encoder-based inner-loop speed-control and encoder-IMU-ultrasound-based outer-loop cruise-position-directional-separation-control, (3) Arduino motor-shield for inner-loop motor-speed-control, (4)Raspberry Pi II computer-board for demanding outer-loop vision-based cruise- position-directional-control, (5) Raspberry Pi 5MP camera for outer-loop cruise-position-directional-control (exploiting WiFi to send video back to laptop), (6) forward-pointing ultrasonic distance/rangefinder sensor for outer-loop separation-control, and (7) 2.4 GHz spread-spectrum RC capability to replace original 27/49 MHz RC. Each “enhanced”/ augmented DDTT-vehicle costs less than 􀀀175 but offers the capability of commercially available vehicles costing over 􀀀500. Both the Arduino and Raspberry are low-cost, well-supported (software wise) and easy-to-use. For the vehicle classes considered (i.e. DD, RWD), both kinematic and dynamical (planar xy) models are examined. Suitable nonlinear/linear-models are used to develop inner/outer-loopcontrol laws.

All demonstrations presented involve enhanced DDTT-vehicles; one the F-150; one a quadrotor. The following summarizes key hardware demonstrations: (1) cruise-control along line, (2) position-control along line (3) position-control along curve (4) planar (xy) Cartesian stabilization, (5) cruise-control along jagged line/curve, (6) vehicle-target spacing-control, (7) multi-robot spacing-control along line/curve, (8) tracking slowly-moving remote-controlled quadrotor, (9) avoiding obstacle while moving toward target, (10) RC F-150 followed by DDTT-vehicle. Hardware data/video is compared with, and corroborated by, model-based simulations. In short, many capabilities that are critical for reaching the longer-term FAME goal are demonstrated.
Date Created
2015
Agent

Multivariable control of fixed wing aircrafts

153730-Thumbnail Image.png
Description
This thesis addresses control design for fixed-wing air-breathing aircraft. Four aircraft with distinct dynamical properties are considered: a scram-jet powered hypersonic (100foot long, X-43 like, wedge shaped) aircraft with flexible modes operating near Mach 8, 85k ft, a NASA

This thesis addresses control design for fixed-wing air-breathing aircraft. Four aircraft with distinct dynamical properties are considered: a scram-jet powered hypersonic (100foot long, X-43 like, wedge shaped) aircraft with flexible modes operating near Mach 8, 85k ft, a NASA HiMAT (Highly Maneuverable Aircraft Technology) F-18 aircraft,

a McDonnell Douglas AV-8A Harrier aircraft, and a Vought F-8 Crusader aircraft. A two-input two-output (TITO) longitudinal LTI (linear time invariant) dynamical model is used for each aircraft. Control design trade studies are conducted for each of the aircraft. Emphasis is placed on the hypersonic vehicle because of its complex nonlinear (unstable, non-minimum phase, flexible) dynamics and uncertainty associated with hypersonic flight (Mach $>$ 5, shocks and high temperatures on leading edges). Two plume models are used for the hypersonic vehicle – an old plume model and a new plume model. The old plume model is simple and assumes a typical decaying pressure distribution for aft nozzle. The new plume model uses Newtonian impact theory and a nonlinear solver to compute the aft nozzle pressure distribution. Multivariable controllers were generated using standard weighted $H_{\inf}$ mixed-sensitivity optimization as well as a new input disturbance weighted mixed-sensitivity framework that attempts to achieve good multivariable properties at both the controls (plant inputs) as well as the errors (plant outputs). Classical inner-outer (PD-PI) structures (partially centralized and decentralized) were also used. It is shown that while these classical (sometimes partially centralized PD-PI) structures could be used to generate comparable results to the multivariable controllers (e.g. for the hypersonic vehicle, Harrier, F-8), considerable tuning (iterative optimization) is often essential. This is especially true for the highly coupled hypersonic vehicle – thus justifying the need for a good multivariable control design tool. Fundamental control design tradeoffs for each aircraft are presented – comprehensively for the hypersonic aircraft. In short, the thesis attempts to shed light on when complex controllers are essential and when simple structures are sufficient for achieving control designs with good multivariable loop properties at both the errors (plant outputs) and the controls (plant inputs).
Date Created
2015
Agent

Modeling, analysis, and control of a hypersonic vehicle with significant aero-thermo-elastic-propulsion interactions: elastic, thermal and mass uncertainty

149577-Thumbnail Image.png
Description
This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow

This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.
Date Created
2011
Agent