An Analysis of the Aerodynamic Performance of Formula One Racing Vehicles using a Tow Tank

Description

The objectives of this project are to design a statically determinant load cell mechanism for a prototype tow tank ultimately culminating in the testing of the aerodynamic performance of a Formula One racing car model. This paper also serves as

The objectives of this project are to design a statically determinant load cell mechanism for a prototype tow tank ultimately culminating in the testing of the aerodynamic performance of a Formula One racing car model. This paper also serves as a proof of concept for force data collection for a full-sized tow tank being developed by Isabella All [8]. The project includes the design and construction of the load cell mechanism which utilizes a load cell to measure the force in a specific member of the mechanism which is then used to determine the semi-lift and drag forces for a given test model. For this specific project, a model of the front-end of an F1 racing car was used for data collection and analysis. It was found that for a short period of time within each test run, constant force data was able to be collected from the load cell which could then be transformed into semi-lift and drag force data. Ultimately, the drag coefficient acting on the model was found to be in the range of 0.9 to 1.3 which somewhat falls in line with the estimated values of 0.7 to 1.0 [1] for F1 racing vehicles. Although the final data collected may not be entirely accurate due to errors discussed in the paper, the ideas presented in this project can be fully realized with some minor changes and adjustments.

Date Created
2023-05
Agent

The Design and Manufacturing of a Towing Tank for Experimental Fluid Mechanics

166190-Thumbnail Image.png
Description
This paper documents the design, analysis, and construction of a towing tank suitable for experimental studies within a Reynolds number less than approximately 500,000, for test models of varying shape. The design and manufacturing of a towing tank provides Arizona

This paper documents the design, analysis, and construction of a towing tank suitable for experimental studies within a Reynolds number less than approximately 500,000, for test models of varying shape. The design and manufacturing of a towing tank provides Arizona State University with laboratory equipment for experimental fluid mechanics. The design consists of a 3-meter-long, 0.5-meter-wide, and 0.8-meter-high cast acrylic tank with aluminum welded-frame supports. There is a pulling mechanism consisting of a belt drive and linear rail guide system that will be positioned on top of the tank. The pulling mechanism is currently in the prototype development stage. The prototype serves as a proof of concept for the final design, as data has been collected and analyzed using MATLAB, resolving the drag force of a submerged test model. This paper demonstrates the design process, prototype development, and construction of the towing tank. The original goal of this research was to answer questions about optimization of a swimmer’s technique by providing strong experimental results and deep analysis of the factors affecting performance. However, there were tasks along the way that shifted the focus from experimentation and analysis to design and manufacturing.
Date Created
2022-05
Agent

Elliptic Interface Reconstruction for Two-Phase Flow Problems Using the Volume of Fluid Method

165177-Thumbnail Image.png
Description

An interface reconstruction algorithm for the Volume of Fluid (VOF) method is required for two-phase flow problems for advection of phase interface. The primary method for interface reconstruction has been through piecewise linear interface calculation (PLIC) reconstruction. However, while PLIC

An interface reconstruction algorithm for the Volume of Fluid (VOF) method is required for two-phase flow problems for advection of phase interface. The primary method for interface reconstruction has been through piecewise linear interface calculation (PLIC) reconstruction. However, while PLIC reconstruction is highly accurate at representing small curvature interfaces by approximating planes across multiple grid cells, accuracy problems arise when the size of the mesh is too coarse to accurately approximate a large curvature without resorting to refining the mesh. An elliptic interface reconstructing algorithm is explored for two-phase flow problems in 2D to determine the viability of a higher-order interface reconstruction algorithm. This requires first developing an area overlap function between an arbitrary triangle and ellipse, which is then extended to calculate the area fraction field of an ellipse within a mesh. Then, the "reverse" problem of elliptic interface reconstruction given an area fraction field is examined. A study is conducted to determine the presence of any local minimums when varying the ellipse parameters. In the future, a multi-dimensional root-finding solver using Newton's Method will be developed to properly reconstruct the elliptic interface given the area fraction field.

Date Created
2022-05
Agent

Identifying Liquid Structures Based on Length Scales & Quantifying Them Using a Sphere Model

161953-Thumbnail Image.png
Description
Identifying and tracking the location of the fluid interface is a fundamental aspect of multiphase flows. The Volume of Fluid (VOF) and Level Set methods are widely used to track the interface accurately. Analyzing the liquid structures such as sheets,

Identifying and tracking the location of the fluid interface is a fundamental aspect of multiphase flows. The Volume of Fluid (VOF) and Level Set methods are widely used to track the interface accurately. Analyzing the liquid structures such as sheets, ligaments, and droplets helps understand the flow physics and fluid breakup mechanism, aids in predicting droplet formation, improves atomization modeling and spray combustion. The thesis focuses on developing a new method to identify these liquid structures and devise a sphere model for droplet size prediction by augmenting concepts of linear algebra, rigid body dynamics, computational fluid mechanics, scientific computing, and visualization. The first part of the thesis presents a new approach to classify the fluid structures based on their length scales along their principal axes. This approach provides a smooth tracking of the structures' generation history instead of relying on high-speed video imaging of the experiment. A droplet is observed to have three equal length scales, while a ligament has one and a sheet has two significantly larger length scales. The subsequent breakup of ligaments and droplets depends on the atomizer geometry, operating conditions, and fluid physical properties. While it's straightforward to apply DNS and estimate this breakup, it is proven to be computationally expensive. The second part of the thesis deals with developing a sphere model that would essentially reduce this computational cost. After identifying a liquid structure, the sphere model utilizes the level set data in the domain to quantify the structure using spheres. By using the evolution information of these spheres as they separate from each other, the subsequent droplet size distribution can be evaluated.
Date Created
2021
Agent

Exploration of Lunar Contingency Devices

147601-Thumbnail Image.png
Description

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with the new xEMU suit and enable astronauts to effectively collect and secure an initial sample upon landing. The final prototype developed by the team features a sliding plate design with each plate slightly shorter than the previous. The device utilizes the majority of the xEMU suit’s front pocket volume while still allowing space for the astronaut’s hand and the bag for the sample. Considering safety concerns, the device satisfies NASA’s requirements for manual handheld devices and poses no threat to the astronaut under standard operation. In operation, the final design experiences an acceptable level stress in the primary use direction, and an even less in the lateral direction. Using assumptions such as the depth and density of lunar soil to be sampled, the working factor of safety is about 2 for elastic deformation, but the tool can still be operated and even collapsed at roughly double that stress. Unfortunately, the scope of this thesis only covers the effectiveness of resin prototypes and simulations of aluminum models, but properly manufactured aluminum prototypes are the next step for validating this design as a successor to the design used on the Apollo missions.

Date Created
2021-05
Agent

Exploration of Lunar Contingency Devices

147602-Thumbnail Image.png
Description

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with the new xEMU suit and enable astronauts to effectively collect and secure an initial sample upon landing. The final prototype developed by the team features a sliding plate design with each plate slightly shorter than the previous. The device utilizes the majority of the xEMU suit’s front pocket volume while still allowing space for the astronaut’s hand and the bag for the sample. Considering safety concerns, the device satisfies NASA’s requirements for manual handheld devices and poses no threat to the astronaut under standard operation. In operation, the final design experiences an acceptable level stress in the primary use direction, and an even less in the lateral direction. Using assumptions such as the depth and density of lunar soil to be sampled, the working factor of safety is about 2 for elastic deformation, but the tool can still be operated and even collapsed at roughly double that stress. Unfortunately, the scope of this thesis only covers the effectiveness of resin prototypes and simulations of aluminum models, but properly manufactured aluminum prototypes are the next step for validating this design as a successor to the design used on the Apollo missions.

Date Created
2021-05
Agent

Exploration of Lunar Contingency Devices

147603-Thumbnail Image.png
Description

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with the new xEMU suit and enable astronauts to effectively collect and secure an initial sample upon landing. The final prototype developed by the team features a sliding plate design with each plate slightly shorter than the previous. The device utilizes the majority of the xEMU suit’s front pocket volume while still allowing space for the astronaut’s hand and the bag for the sample. Considering safety concerns, the device satisfies NASA’s requirements for manual handheld devices and poses no threat to the astronaut under standard operation. In operation, the final design experiences an acceptable level stress in the primary use direction, and an even less in the lateral direction. Using assumptions such as the depth and density of lunar soil to be sampled, the working factor of safety is about 2 for elastic deformation, but the tool can still be operated and even collapsed at roughly double that stress. Unfortunately, the scope of this thesis only covers the effectiveness of resin prototypes and simulations of aluminum models, but properly manufactured aluminum prototypes are the next step for validating this design as a successor to the design used on the Apollo missions.

Date Created
2021-05
Agent

Exploration of Lunar Contingency Devices

147606-Thumbnail Image.png
Description

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with

The Micro-g NExT 2019 challenge set out to find a new device to replace the Apollo mission lunar contingency sampler in preparation for the 2024 Artemis mission. The 2019 challenge set a series of requirements that would enable compatibility with the new xEMU suit and enable astronauts to effectively collect and secure an initial sample upon landing. The final prototype developed by the team features a sliding plate design with each plate slightly shorter than the previous. The device utilizes the majority of the xEMU suit’s front pocket volume while still allowing space for the astronaut’s hand and the bag for the sample. Considering safety concerns, the device satisfies NASA’s requirements for manual handheld devices and poses no threat to the astronaut under standard operation. In operation, the final design experiences an acceptable level stress in the primary use direction, and an even less in the lateral direction. Using assumptions such as the depth and density of lunar soil to be sampled, the working factor of safety is about 2 for elastic deformation, but the tool can still be operated and even collapsed at roughly double that stress. Unfortunately, the scope of this thesis only covers the effectiveness of resin prototypes and simulations of aluminum models, but properly manufactured aluminum prototypes are the next step for validating this design as a successor to the design used on the Apollo missions.

Date Created
2021-05
Agent

Dynamic Radiative Thermal Management and Optical Force Modulation with Tunable Nanophotonic Structures Based on Thermochromic Vanadium Dioxide

158870-Thumbnail Image.png
Description
This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which

This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2 typically undergoes a dramatic shift in optical properties at T = 341 K, which can be reduced through a variety of techniques to a temperature more suitable for thermal control applications. A VO2-based Fabry-Perot variable emitter is designed, fabricated, characterized, and experimentally demonstrated. The designed emitter has high emissivity when the radiating surface temperature is above 345 K and low emissivity when the temperature is less than 341 K. A uniaxial transfer matrix method and Bruggeman effective medium theory are both introduced to model the anisotropic properties of the VO2 to facilitate the design of multilayer VO2-based devices. A new furnace oxidation process is developed for fabricating high quality VO2 and the resulting thin films undergo comprehensive material and optical characterizations. The corresponding measurement platform is developed to measure the temperature-dependent transmittance and reflectance of the fabricated Fabry-Perot samples. The variable heat rejection of the fabricated samples is demonstrated via bell jar and cryothermal vacuum calorimetry measurements. Thermal modeling of a spacecraft equipped with variable emittance radiators is also conducted to elucidate the requirements and the impact for thermochromic variable emittance technology.
The potential of VO2 to be used as an optical force modulating device is also investigated for spacecraft micropropulsion. The preliminary design considers a Fabry-Perot cavity with an anti-reflection coating which switches between an absorptive “off” state (for insulating VO2) and a reflective “on” state (for metallic VO2), thereby modulating the incident solar radiation pressure. The visible and near-infrared optical properties of the fabricated vanadium dioxide are examined to determine if there is a sufficient optical property shift in those regimes for a tunable device.
Date Created
2020
Agent

Studying the Effect of Model Input on Output Accuracy Using an Automated CFD Tool

131242-Thumbnail Image.png
Description
This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are

This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are tested through three flight speed regimes and from laminar to turbulent flow. Each of these input parameters are tested for the NACA 0012 and SC-1095 airfoils to ensure that the accuracy is similar regardless of geometric complexity. The TACAA program was used to run all simulation testing, and its overall functionality is discussed. The results gathered from the preliminary testing showed that the spread of variable input data points caused data gaps in the transonic regime results, which provided motivation to conduct further testing within the transonic region for both airfoils. After collecting all TACAA results, data from wind tunnel testing was compiled to compare. The comparison showed that (1) additional testing would be necessary to fully assess the accuracy of the results for the SC-1095 airfoil and (2) TACAA is generally accurate for compressible, turbulent flows.
Date Created
2020-05
Agent