Controllability and Stabilization of Kolmogorov Forward Equations for Robotic Swarms

157578-Thumbnail Image.png
Description
Numerous works have addressed the control of multi-robot systems for coverage, mapping, navigation, and task allocation problems. In addition to classical microscopic approaches to multi-robot problems, which model the actions and decisions of individual robots, lately, there has been a

Numerous works have addressed the control of multi-robot systems for coverage, mapping, navigation, and task allocation problems. In addition to classical microscopic approaches to multi-robot problems, which model the actions and decisions of individual robots, lately, there has been a focus on macroscopic or Eulerian approaches. In these approaches, the population of robots is represented as a continuum that evolves according to a mean-field model, which is directly designed such that the corresponding robot control policies produce target collective behaviours.



This dissertation presents a control-theoretic analysis of three types of mean-field models proposed in the literature for modelling and control of large-scale multi-agent systems, including robotic swarms. These mean-field models are Kolmogorov forward equations of stochastic processes, and their analysis is motivated by the fact that as the number of agents tends to infinity, the empirical measure associated with the agents converges to the solution of these models. Hence, the problem of transporting a swarm of agents from one distribution to another can be posed as a control problem for the forward equation of the process that determines the time evolution of the swarm density.



First, this thesis considers the case in which the agents' states evolve on a finite state space according to a continuous-time Markov chain (CTMC), and the forward equation is an ordinary differential equation (ODE). Defining the agents' task transition rates as the control parameters, the finite-time controllability, asymptotic controllability, and stabilization of the forward equation are investigated. Second, the controllability and stabilization problem for systems of advection-diffusion-reaction partial differential equations (PDEs) is studied in the case where the control parameters include the agents' velocity as well as transition rates. Third, this thesis considers a controllability and optimal control problem for the forward equation in the more general case where the agent dynamics are given by a nonlinear discrete-time control system. Beyond these theoretical results, this thesis also considers numerical optimal transport for control-affine systems. It is shown that finite-volume approximations of the associated PDEs lead to well-posed transport problems on graphs as long as the control system is controllable everywhere.
Date Created
2019
Agent

Modeling, design and control of multiple low-cost robotic ground vehicles

154029-Thumbnail Image.png
Description
Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost)

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost) remote-control (RC) “toy” vehicles can be converted into intelligent multi-capability robotic-platforms for conducting FAME research. This is shown for two vehicle classes: (1) six differential-drive (DD) RC vehicles called Thunder Tumbler (DDTT) and (2) one rear-wheel drive (RWD) RC car called Ford F-150 (1:14 scale). Each DDTT-vehicle was augmented to provide a substantive suite of capabilities as summarized below (It should be noted, however, that only one DDTT-vehicle was augmented with an inertial measurement unit (IMU) and 2.4 GHz RC capability): (1) magnetic wheel-encoders/IMU for(dead-reckoning-based) inner-loop speed-control and outer-loop position-directional-control, (2) Arduino Uno microcontroller-board for encoder-based inner-loop speed-control and encoder-IMU-ultrasound-based outer-loop cruise-position-directional-separation-control, (3) Arduino motor-shield for inner-loop motor-speed-control, (4)Raspberry Pi II computer-board for demanding outer-loop vision-based cruise- position-directional-control, (5) Raspberry Pi 5MP camera for outer-loop cruise-position-directional-control (exploiting WiFi to send video back to laptop), (6) forward-pointing ultrasonic distance/rangefinder sensor for outer-loop separation-control, and (7) 2.4 GHz spread-spectrum RC capability to replace original 27/49 MHz RC. Each “enhanced”/ augmented DDTT-vehicle costs less than 􀀀175 but offers the capability of commercially available vehicles costing over 􀀀500. Both the Arduino and Raspberry are low-cost, well-supported (software wise) and easy-to-use. For the vehicle classes considered (i.e. DD, RWD), both kinematic and dynamical (planar xy) models are examined. Suitable nonlinear/linear-models are used to develop inner/outer-loopcontrol laws.

All demonstrations presented involve enhanced DDTT-vehicles; one the F-150; one a quadrotor. The following summarizes key hardware demonstrations: (1) cruise-control along line, (2) position-control along line (3) position-control along curve (4) planar (xy) Cartesian stabilization, (5) cruise-control along jagged line/curve, (6) vehicle-target spacing-control, (7) multi-robot spacing-control along line/curve, (8) tracking slowly-moving remote-controlled quadrotor, (9) avoiding obstacle while moving toward target, (10) RC F-150 followed by DDTT-vehicle. Hardware data/video is compared with, and corroborated by, model-based simulations. In short, many capabilities that are critical for reaching the longer-term FAME goal are demonstrated.
Date Created
2015
Agent

A variational approach to planning, allocation and mapping in robot swarms using infinite dimensional models

153297-Thumbnail Image.png
Description
This thesis considers two problems in the control of robotic swarms. Firstly, it addresses a trajectory planning and task allocation problem for a swarm of resource-constrained robots that cannot localize or communicate with each other and that exhibit stochasticity in

This thesis considers two problems in the control of robotic swarms. Firstly, it addresses a trajectory planning and task allocation problem for a swarm of resource-constrained robots that cannot localize or communicate with each other and that exhibit stochasticity in their motion and task switching policies. We model the population dynamics of the robotic swarm as a set of advection-diffusion- reaction (ADR) partial differential equations (PDEs).

Specifically, we consider a linear parabolic PDE model that is bilinear in the robots' velocity and task-switching rates. These parameters constitute a set of time-dependent control variables that can be optimized and transmitted to the robots prior to their deployment or broadcasted in real time. The planning and allocation problem can then be formulated as a PDE-constrained optimization problem, which we solve using techniques from optimal control. Simulations of a commercial pollination scenario validate the ability of our control approach to drive a robotic swarm to achieve predefined spatial distributions of activity over a closed domain, which may contain obstacles. Secondly, we consider a mapping problem wherein a robotic swarm is deployed over a closed domain and it is necessary to reconstruct the unknown spatial distribution of a feature of interest. The ADR-based primitives result in a coefficient identification problem for the corresponding system of PDEs. To deal with the inherent ill-posedness of the problem, we frame it as an optimization problem. We validate our approach through simulations and show that reconstruction of the spatially-dependent coefficient can be achieved with considerable accuracy using temporal information alone.
Date Created
2014
Agent

Design of miniaturized underwater vehicle with propulsions for deep-sea research applications

152949-Thumbnail Image.png
Description
The ocean is vital to the health of our planet but remains virtually unexplored. Many researchers seek to understand a wide range of geological and biological phenomena by developing technologies which enable exploration of the deep-sea. The task

The ocean is vital to the health of our planet but remains virtually unexplored. Many researchers seek to understand a wide range of geological and biological phenomena by developing technologies which enable exploration of the deep-sea. The task of developing a technology which can withstand extreme pressure and temperature gradients in the deep ocean is not trivial. Of these technologies, underwater vehicles were developed to study the deep ocean, but remain large and expensive to manufacture. I am proposing the development of cost efficient miniaturized underwater vehicle (mUV) with propulsion systems to carry small measurement devices and enable deep-sea exploration. These mUV's overall size is optimized based on the vehicle parameters such as energy density, desired velocity, swimming time and propulsion performance. However, there are limitations associated with the size of the mUV which leads to certain challenges. For example, 2000 m below the sea level, the pressure is as high as 3000 psi. Therefore, certain underwater vehicle modules, such as the propulsion system, will require pressure housing to ensure the functionality of the thrust generation. In the case of a mUV swimming against the deep-sea current, a thrust magnitude is required to enable the vehicle to overcome the ocean current speed and move forward. Therefore, the size of the mUV is limited by the energy density and the propeller size. An equation is derived to miniaturize underwater vehicle while performing with a certain specifications. An inrunner three-phase permanent magnet brushless DC motor is designed and fabricated with a specific size to fit inside the mUV's core. The motor is composed of stator winding in a pressure housing and an open to water ring-propeller rotor magnet. Several ring-propellers are 3D printed and tested experimentally to determine their performances and efficiencies. A planer motion optimal trajectory for the mUV is determined to minimize the energy usage. Those studies enable the design of size optimized underwater vehicle with propulsion to carry small measurement sensors and enable underwater exploration. Developing mUV's will enable ocean exploration that can lead to significant scientific discoveries and breakthroughs that will solve current world health and environmental problems.
Date Created
2014
Agent