Soft Wearable Robotics for Ankle and Lower Body Gait Rehabilitation: Design, Modeling, and Implementation of Fabric-Based Actuators to Assist Human Locomotion

161597-Thumbnail Image.png
Description
This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered

This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered soft actuators to assist the ankle in multiple degrees-of-freedom during standing and walking tasks. The flat fabric pneumatic artificial muscle (ff-PAM) contracts upon pressurization and assists ankle plantarflexion in the sagittal plane. The Multi-material Actuator for Variable Stiffness (MAVS) aids in supporting ankle inversion/eversion in the frontal plane. Analytical models of the ff-PAM and MAVS were created to understand how the changing of the design parameters affects tensile force generation and stiffness support, respectively. The models were validated by both finite element analysis and experimental characterization using a universal testing machine. A set of human experiments were performed with healthy participants: 1) to measure lateral ankle support during quiet standing, 2) to determine lateral ankle support during walking over compliant surfaces, and 3) to evaluate plantarflexion assistance at push-off during treadmill walking, and 4) determine if the SR-AFO could be used for gait entrainment. Group results revealed increased ankle stiffness during quiet standing with the MAVS active, reduced ankle deflection while walking over compliant surfaces with the MAVS active, and reduced muscle effort from the SOL and GAS during 40 - 60% of the gait cycle with the dual ff-PAM active. The SR-AFO shows promising results in providing lateral ankle support and plantarflexion assistance with healthy participants, and a drastically increased basin of entrainment, which suggests a capability to help restore the gait of impaired users in future trials. The ff-PAM actuators were used in an X-orientation to assist the hip in flexion and extension. The Soft Robotic Hip Exosuit (SR-HExo) was evaluated using the same set of actuators and trials with healthy participants showed reduction in muscle effort during hip flexion and extension to further enhance the study of soft fabric actuators on human gait assistance.
Date Created
2021
Agent

Decentralized Control of Collective Transport by Multi-Robot Systems with Minimal Information

158834-Thumbnail Image.png
Description
One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by a single robot. Numerous control schemes have been proposed for

One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by a single robot. Numerous control schemes have been proposed for collective transport in environments where robots can localize themselves (e.g., using GPS) and communicate with one another, have information about the payload's geometric and dynamical properties, and follow predefined robot and/or payload trajectories. However, these approaches cannot be applied in uncertain environments where robots do not have reliable communication and GPS and lack information about the payload. These conditions characterize a variety of applications, including construction, mining, assembly in space and underwater, search-and-rescue, and disaster response.
Toward this end, this thesis presents decentralized control strategies for collective transport by robots that regulate their actions using only their local sensor measurements and minimal prior information. These strategies can be implemented on robots that have limited or absent localization capabilities, do not explicitly exchange information, and are not assigned predefined trajectories. The controllers are developed for collective transport over planar surfaces, but can be extended to three-dimensional environments.

This thesis addresses the above problem for two control objectives. First, decentralized controllers are proposed for velocity control of collective transport, in which the robots must transport a payload at a constant velocity through an unbounded domain that may contain strictly convex obstacles. The robots are provided only with the target transport velocity, and they do not have global localization or prior information about any obstacles in the environment. Second, decentralized controllers are proposed for position control of collective transport, in which the robots must transport a payload to a target position through a bounded or unbounded domain that may contain convex obstacles. The robots are subject to the same constraints as in the velocity control scenario, except that they are assumed to have global localization. Theoretical guarantees for successful execution of the task are derived using techniques from nonlinear control theory, and it is shown through simulations and physical robot experiments that the transport objectives are achieved with the proposed controllers.
Date Created
2020
Agent

Development of a Novel Low Inertia Exoskeleton Device for Characterizing the Neuromuscular Properties of the Human Shoulder

158726-Thumbnail Image.png
Description
The human shoulder plays an integral role in upper limb motor function. As the basis of arm motion, its performance is vital to the accomplishment of daily tasks. Impaired motor control, as a result of stroke or other disease, can

The human shoulder plays an integral role in upper limb motor function. As the basis of arm motion, its performance is vital to the accomplishment of daily tasks. Impaired motor control, as a result of stroke or other disease, can cause errors in shoulder position to accumulate and propagate to the entire arm. This is why it is a highlight of concern for clinicians and why it is an important point of study. One of the primary causes of impaired shoulder motor control is abnormal mechanical joint impedance, which can be modeled as a 2nd order system consisting of mass, spring and damper. Quantifying shoulder stiffness and damping between healthy and impaired subjects could help improve our collective understanding of how many different neuromuscular diseases impact arm performance. This improved understanding could even lead to better rehabilitation protocols for conditions such as stroke through better identification and targeting of damping dependent spasticity and stiffness dependent hypertonicity. Despite its importance, there is a fundamental knowledge gap in the understanding of shoulder impedance, mainly due to a lack of appropriate characterization tools. Therefore, in order to better quantify shoulder stiffness and damping, a novel low-inertia shoulder exoskeleton is introduced in this work. The device was developed using a newly pioneered parallel actuated robot architecture specifically designed to interface with complex biological joints like the shoulder, hip, wrist and ankle. In addition to presenting the kinematics and dynamics of the shoulder exoskeleton, a series of validation experiments are performed on a human shoulder mock-up to quantify its ability to estimate known impedance properties. Finally, some preliminary data from human experiments is provided to demonstrate the device’s ability to collect the measurements needed to estimate shoulder stiffness and damping while worn by a subject.
Date Created
2020
Agent

Characterization of 2D Human Ankle Stiffness during Postural Balance and Walking for Robot-aided Ankle Rehabilitation

158494-Thumbnail Image.png
Description
The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural

The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in lower extremity function is essential not just to advance the design and control of robots physically interacting with the human lower extremities but also in rehabilitation of humans suffering from neurodegenerative disorders.

In order to characterize the ankle mechanics and understand the underlying mechanisms that influence the neuromuscular properties of the ankle, a novel multi-axial robotic platform was developed. The robotic platform is capable of simulating various haptic environments and transiently perturbing the ankle to analyze the neuromechanics of the ankle, specifically the ankle impedance. Humans modulate ankle impedance to perform various tasks of the lower limb. The robotic platform is used to analyze the modulation of ankle impedance during postural balance and locomotion on various haptic environments. Further, various factors that influence modulation of ankle impedance were identified. Using the factors identified during environment dependent impedance modulation studies, the quantitative relationship between these factors, namely the muscle activation of major ankle muscles, the weight loading on ankle and the torque generation at the ankle was analyzed during postural balance and locomotion. A universal neuromuscular model of the ankle that quantitatively relates ankle stiffness, the major component of ankle impedance, to these factors was developed.

This neuromuscular model is then used as a basis to study the alterations caused in ankle behavior due to neurodegenerative disorders such as Multiple Sclerosis and Stroke. Pilot studies to validate the analysis of altered ankle behavior and demonstrate the effectiveness of robotic rehabilitation protocols in addressing the altered ankle behavior were performed. The pilot studies demonstrate that the altered ankle mechanics can be quantified in the affected populations and correlate with the observed adverse effects of the disability. Further, robotic rehabilitation protocols improve ankle control in affected populations as seen through functional improvements in postural balance and locomotion, validating the neuromuscular approach for rehabilitation.
Date Created
2020
Agent

Evaluating the Effects of Ankle-Foot-Orthoses, Functional Electrical Stimulators, and Trip-specific Training on Fall Outcomes in Individuals with Stroke

157994-Thumbnail Image.png
Description
This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators

This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established positive impacts of AFOs and FES devices on balance and gait, AFO and FES users fall at a high rate. In chapter 2 (as a preliminary study), solely mechanical impacts of a semi-rigid AFO on the compensatory stepping response of young healthy individuals following trip-like treadmill perturbations were evaluated. It was found that a semi-rigid AFO on the stepping leg diminished the propulsive impulse of the compensatory step which led to decreased trunk movement control, shorter step length, and reduced center of mass (COM) stability. These results highlight the critical role of plantarflexors in generating an effective compensatory stepping response. In chapter 3, the underlying biomechanical mechanisms leading to high fall risk in long-term AFO and FES users with chronic stroke were studied. It was found that AFO and FES users fall more than Non-users because they have a more impaired lower limb that is not fully addressed by AFO/FES, therefore leading to a more impaired compensatory stepping response characterized by increased inability to generate a compensatory step with paretic leg and decreased trunk movement control. An ideal future AFO that provides dorsiflexion assistance during the swing phase and plantarflexion assistance during the push-off phase of gait is suggested to enhance the compensatory stepping response and reduce more falls. In chapter 4, the effects of a single-session trip-specific training on the compensatory stepping response of individuals with stroke were evaluated. Trunk movement control was improved after a single session of training suggesting that this type of training is a viable option to enhance compensatory stepping response and reduce falls in individuals with stroke. Finally, a future powered AFO with plantarflexion assistance complemented by a trip-specific training program is suggested to enhance the compensatory stepping response and decrease falls in individuals with stroke.
Date Created
2019
Agent

Autonomous Coupling of a UAV and UGV

Description
A heterogeneous team of robots working in symbiosis can maximize their strengths while complementing each other’s weaknesses. These simple robots can achieve more working together than they could on their own but cost less than a single robot with the

A heterogeneous team of robots working in symbiosis can maximize their strengths while complementing each other’s weaknesses. These simple robots can achieve more working together than they could on their own but cost less than a single robot with the same combination of capabilities. This project aims to validate the symbiotic relationship of an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) with a physical implementation of a heterogenous team of robots and a demonstration of their capabilities. This paper details the selection of robots, the design of the physical coupling mechanism, and the design of the autonomous controls. An experiment was performed to assess the capabilities of the robots according to four performance criteria. The UGV must navigate a space while the UAV follows. The UAV must couple with the UGV. The UAV must lift the UGV over an obstacle. The UGV must navigate the space while carrying the UAV.
Date Created
2019-12
Agent

Anticipatory muscle responses for transitioning between rigid surface and surfaces of different compliance:: towards smart ankle-foot prostheses

157461-Thumbnail Image.png
Description
Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. Approximately 2 million Americans live

with an amputation with most of those amputations being of the lower limbs. To

advance current state-of-the-art lower

Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. Approximately 2 million Americans live

with an amputation with most of those amputations being of the lower limbs. To

advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt

performance at a level of intelligence seen in human walking. As such, this thesis

focuses on the mechanisms involved during human walking, while transitioning from

rigid to compliant surfaces such as from pavement to sand, grass or granular media.

Utilizing a unique tool, the Variable Stiffness Treadmill (VST), as the platform for

human walking, rigid to compliant surface transitions are simulated. The analysis of

muscular activation during the transition from rigid to different compliant surfaces

reveals specific anticipatory muscle activation that precedes stepping on a compliant

surface. There is also an indication of varying responses for different surface stiffness

levels. This response is observed across subjects. Results obtained are novel and

useful in establishing a framework for implementing control algorithm parameters to

improve powered ankle prosthesis. With this, it is possible for the prosthesis to adapt

to a new surface and therefore resulting in a more robust smart powered lower limb

prosthesis.
Date Created
2019
Agent

Efficiency Based Flight Analysis for a Novel Quadcopter System

Description
For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the

For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery size should be increased. Another way is to increase the efficiency of the propellers. Previous research shows that ducting a propeller can cause an increase of up to 94 % in the thrust produced by the rotor-duct system. This research focused on developing and testing a quadcopter having a centrally ducted rotor which produces 60 % of the total system thrust and 3 other peripheral rotors. This quadcopter will provide longer flight times while having the same maneuvering flexibility in planar movements.
Date Created
2019
Agent

Simulation and analysis of walking on compliant surfaces

157220-Thumbnail Image.png
Description
There are a large group of amputees living in the country and the number of them is supposed to increase a lot in the following years. Among them, lower-limb amputees are the majority. In order to improve the locomotion of

There are a large group of amputees living in the country and the number of them is supposed to increase a lot in the following years. Among them, lower-limb amputees are the majority. In order to improve the locomotion of lower-limb amputees, many prostheses have been developed. Most commercially available prostheses are passive. They can not actively provide pure torque as an intact human could do. Powered prostheses have been the focus during the past decades. Some advanced prostheses have been successful in walking on level ground as well as on inclined surface and climbing stairs. However, not much work has been done regarding walking on compliant surfaces. My preliminary studies on myoelectric signals of the lower limbs during walking showed that there exists difference in muscle activation when walking on compliant surfaces. However, the mapping of muscle activities to joint torques for a prosthesis that will be capable of providing the required control to walk on compliant surfaces is not straightforward. In order to explore the effects of surface compliance on leg joint torque, a dynamic model of the lower limb was built using Simscape. The simulated walker (android) was commanded to track the same kinematics data of intact human walking on solid surface. Multiple simulations were done while varying ground stiffness in order to see how the torque at the leg joints would change as a function of the ground compliance. The results of this study could be used for the control of powered prostheses for robust walking on compliant surfaces.
Date Created
2019
Agent

Chip production rate and tool wear estimation in micro-endmilling

157170-Thumbnail Image.png
Description
In this research, a new cutting edge wear estimator for micro-endmilling is developed and the reliabillity of the estimator is evaluated. The main concept of this estimator is the minimum chip thickness effect. This estimator predicts the cutting edge radius

In this research, a new cutting edge wear estimator for micro-endmilling is developed and the reliabillity of the estimator is evaluated. The main concept of this estimator is the minimum chip thickness effect. This estimator predicts the cutting edge radius by detecting the drop in the chip production rate as the cutting edge of a micro- endmill slips over the workpiece when the minimum chip thickness becomes larger than the uncut chip thickness, thus transitioning from the shearing to the ploughing dominant regime. The chip production rate is investigated through simulation and experiment. The simulation and the experiment show that the chip production rate decreases when the minimum chip thickness becomes larger than the uncut chip thickness. Also, the reliability of this estimator is evaluated. The probability of correct estimation of the cutting edge radius is more than 80%. This cutting edge wear estimator could be applied to an online tool wear estimation system. Then, a large number of cutting edge wear data could be obtained. From the data, a cutting edge wear model could be developed in terms of the machine control parameters so that the optimum control parameters could be applied to increase the tool life and the machining quality as well by minimizing the cutting edge wear rate.

In addition, in order to find the stable condition of the machining, the stabillity lobe of the system is created by measuring the dynamic parameters. This process is needed prior to the cutting edge wear estimation since the chatter would affect the cutting edge wear and the chip production rate. In this research, a new experimental set-up for measuring the dynamic parameters is developed by using a high speed camera with microscope lens and a loadcell. The loadcell is used to measure the stiffness of the tool-holder assembly of the machine and the high speed camera is used to measure the natural frequency and the damping ratio. From the measured data, a stability lobe is created. Even though this new method needs further research, it could be more cost-effective than the conventional methods in the future.
Date Created
2019
Agent