Sequential Circuit Temporal Hardening on an Advanced finFET Process

171989-Thumbnail Image.png
Description
Microelectronic circuits are prone to upsets in the natural and manmade radiation environments. As the scaling of these circuits continues, they have become more susceptible to these upsets. In highly scaled technologies even the terrestrial radiation environment is becoming increasing

Microelectronic circuits are prone to upsets in the natural and manmade radiation environments. As the scaling of these circuits continues, they have become more susceptible to these upsets. In highly scaled technologies even the terrestrial radiation environment is becoming increasing source of soft errors in integrated circuits. Simultaneously the means of protecting circuits via the process technology have become more and more limited. As a result, design techniques to mitigate the upsets are becoming a requirement in an ever-growing list of applications. This work begins with an overview of radiation effects in integrated circuits. The phenomenology of upsets is discussed along with their basic mechanisms. How these effects are quantified in microelectronic circuits is then presented along with a summary of simulation methods. This is followed with a survey of the state of the field for radiation hardening by design techniques and a selection of radiation hardened flip flop designs. Upsets within these sequential circuits like flip flops can lead to process failure or erroneous execution and thus much of the radiation hardening effort is focused on protecting them. This work applies a systematic approach to radiation hardening by design to a temporally hardened flip flop and implements it in a 14nm finFET process. Forty-nine delay circuits are analyzed and compared on multiple performance metrics before a down select for integration. The resultant flip flop circuit is shown to have a minimum critical charge 3x higher than the baseline library flip flop. Physical design of the flip flop is outlined and nine configurations consisting of three delay lengths and three levels if bit interleaving are accomplished. The circuits are integrated as shift registers in a radiation test chip and exposed to heavy ion testing. Results of heavy ion testing demonstrate a threshold LET increase of approximately 6 MeV∙cm2/mg with marginal increases in saturation cross section for the target LET range. A failure mode is detected while storing ones, that has both area and time dependence. Substrate charge collection is suggested as a cause and a new circuit design is presented to mitigate the error with minimal performance impact.
Date Created
2022
Agent

Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

155838-Thumbnail Image.png
Description
Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double

Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies.

Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques.

A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.
Date Created
2017
Agent

FinFET Cell Library Design and Characterization

155820-Thumbnail Image.png
Description
Modern-day integrated circuits are very capable, often containing more than a billion transistors. For example, the Intel Ivy Bridge 4C chip has about 1.2 billion transistors on a 160 mm2 die. Designing such complex circuits requires automation. Therefore, these designs

Modern-day integrated circuits are very capable, often containing more than a billion transistors. For example, the Intel Ivy Bridge 4C chip has about 1.2 billion transistors on a 160 mm2 die. Designing such complex circuits requires automation. Therefore, these designs are made with the help of computer aided design (CAD) tools. A major part of this custom design flow for application specific integrated circuits (ASIC) is the design of standard cell libraries. Standard cell libraries are a collection of primitives from which the automatic place and route (APR) tools can choose a collection of cells and implement the design that is being put together. To operate efficiently, the CAD tools require multiple views of each cell in the standard cell library. This data is obtained by characterizing the standard cell libraries and compiling the results in formats that the tools can easily understand and utilize.

My thesis focusses on the design and characterization of one such standard cell library in the ASAP7 7 nm predictive design kit (PDK). The complete design flow, starting from the choice of the cell architecture, design of the cell layouts and the various decisions made in that process to obtain optimum results, to the characterization of those cells using the Liberate tool provided by Cadence design systems Inc., is discussed in this thesis. The end results of the characterized library are used in the APR of a few open source register-transfer logic (RTL) projects and the efficiency of the library is demonstrated.
Date Created
2017
Agent

Post-silicon Validation of Radiation Hardened Microprocessor and SRAM arrays

155816-Thumbnail Image.png
Description
Digital systems are increasingly pervading in the everyday lives of humans. The security of these systems is a concern due to the sensitive data stored in them. The physically unclonable function (PUF) implemented on hardware provides a way to protect

Digital systems are increasingly pervading in the everyday lives of humans. The security of these systems is a concern due to the sensitive data stored in them. The physically unclonable function (PUF) implemented on hardware provides a way to protect these systems. Static random-access memories (SRAMs) are designed and used as a strong PUF to generate random numbers unique to the manufactured integrated circuit (IC).

Digital systems are important to the technological improvements in space exploration. Space exploration requires radiation hardened microprocessors which minimize the functional disruptions in the presence of radiation. The design highly efficient radiation-hardened microprocessor for enabling spacecraft (HERMES) is a radiation-hardened microprocessor with performance comparable to the commercially available designs. These designs are manufactured using a foundry complementary metal-oxide semiconductor (CMOS) 55-nm triple-well process. This thesis presents the post silicon validation results of the HERMES and the PUF mode of SRAM across process corners.

Chapter 1 gives an overview of the blocks implemented on the test chip 25. It also talks about the pre-silicon functional verification methodology used for the test chip. Chapter 2 discusses about the post silicon testing setup of test chip 25 and the validation of the setup. Chapter 3 describes the architecture and the test bench of the HERMES along with its testing results. Chapter 4 discusses the test bench and the perl scripts used to test the SRAM along with its testing results. Chapter 5 gives a summary of the post-silicon validation results of the HERMES and the PUF mode of SRAM.
Date Created
2017
Agent

InCheck - an integrated recovery methodology for fine-grained soft-error detection schemes

155040-Thumbnail Image.png
Description
Soft errors are considered as a key reliability challenge for sub-nano scale transistors. An ideal solution for such a challenge should ultimately eliminate the effect of soft errors from the microprocessor. While forward recovery techniques achieve fast recovery from errors

Soft errors are considered as a key reliability challenge for sub-nano scale transistors. An ideal solution for such a challenge should ultimately eliminate the effect of soft errors from the microprocessor. While forward recovery techniques achieve fast recovery from errors by simply voting out the wrong values, they incur the overhead of three copies execution. Backward recovery techniques only need two copies of execution, but suffer from check-pointing overhead.

In this work I explored the efficiency of integrating check-pointing into the application and the effectiveness of recovery that can be performed upon it. After evaluating the available fine-grained approaches to perform recovery, I am introducing InCheck, an in-application recovery scheme that can be integrated into instruction-duplication based techniques, thus providing a fast error recovery. The proposed technique makes light-weight checkpoints at the basic-block granularity, and uses them for recovery purposes.

To evaluate the effectiveness of the proposed technique, 10,000 fault injection experiments were performed on different hardware components of a modern ARM in-order simulated processor. InCheck was able to recover from all detected errors by replaying about 20 instructions, however, the state of the art recovery scheme failed more than 200 times.
Date Created
2016
Agent

Data path implementation for a spatially programmable architecture customized for image processing applications

154862-Thumbnail Image.png
Description
The last decade has witnessed a paradigm shift in computing platforms, from laptops and servers to mobile devices like smartphones and tablets. These devices host an immense variety of applications many of which are computationally expensive and thus are power

The last decade has witnessed a paradigm shift in computing platforms, from laptops and servers to mobile devices like smartphones and tablets. These devices host an immense variety of applications many of which are computationally expensive and thus are power hungry. As most of these mobile platforms are powered by batteries, energy efficiency has become one of the most critical aspects of such devices. Thus, the energy cost of the fundamental arithmetic operations executed in these applications has to be reduced. As voltage scaling has effectively ended, the energy efficiency of integrated circuits has ceased to improve within successive generations of transistors. This resulted in widespread use of Application Specific Integrated Circuits (ASIC), which provide incredible energy efficiency. However, these are not flexible and have high non-recurring engineering (NRE) cost. Alternatively, Field Programmable Gate Arrays (FPGA) offer flexibility to implement any application, but at the cost of higher area and energy compared to ASIC.

In this work, a spatially programmable architecture customized for image processing applications is proposed. The intent is to bridge the efficiency gap between ASICs and FPGAs, by offering FPGA-like flexibility and ASIC-like energy efficiency. This architecture minimizes the energy overheads in FPGAs, which result from the use of fine-grained programming style and global interconnect. It is flexible compared to an ASIC and can accommodate multiple applications.

The main contribution of the thesis is the feasibility analysis of the data path of this architecture, customized for image processing applications. The data path is implemented at the register transfer level (RTL), and the synthesis results are obtained in 45nm technology cell library from a leading foundry. The results of image-processing applications demonstrate that this architecture is within a factor of 10x of the energy and area efficiency of ASIC implementations.
Date Created
2016
Agent

Post-silicon validation of radiation hardened microprocessor, embedded flash and test structures

154425-Thumbnail Image.png
Description
Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not

Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design ‘HERMES’ is a radiation-hardened microprocessor with performance comparable to commercially available designs. The reference design ‘eFlash’ is a prototype of soft-error hardened flash memory for configuring Xilinx FPGAs. These designs are manufactured using a foundry bulk CMOS 90-nm low standby power (LP) process. This thesis presents the post-silicon validation results of these designs.
Date Created
2016
Agent

Redundant skewed clocking of pulse-clocked latches for low power soft-error mitigation

154209-Thumbnail Image.png
Description
An integrated methodology combining redundant clock tree synthesis and pulse clocked latches mitigates both single event upsets (SEU) and single event transients (SET) with reduced power consumption. This methodology helps to change the hardness of the design on the fly.

An integrated methodology combining redundant clock tree synthesis and pulse clocked latches mitigates both single event upsets (SEU) and single event transients (SET) with reduced power consumption. This methodology helps to change the hardness of the design on the fly. This approach, with minimal additional overhead circuitry, has the ability to work in three different modes of operation depending on the speed, hardness and power consumption required by design. This was designed on 90nm low-standby power (LSP) process and utilized commercial CAD tools for testing. Spatial separation of critical nodes in the physical design of this approach mitigates multi-node charge collection (MNCC) upsets. An advanced encryption system implemented with the proposed design, compared to a previous design with non-redundant clock trees and local delay generation. The proposed approach reduces energy per operation up to 18% over an improved version of the prior approach, with negligible area impact. It can save up to 2/3rd of the power consumption and reach maximum possible frequency, when used in non-redundant mode of operation.
Date Created
2015
Agent

Radiation hardened clock design

153935-Thumbnail Image.png
Description
Clock generation and distribution are essential to CMOS microchips, providing synchronization to external devices and between internal sequential logic. Clocks in microprocessors are highly vulnerable to single event effects and designing reliable energy efficient clock networks for mission critical applications

Clock generation and distribution are essential to CMOS microchips, providing synchronization to external devices and between internal sequential logic. Clocks in microprocessors are highly vulnerable to single event effects and designing reliable energy efficient clock networks for mission critical applications is a major challenge. This dissertation studies the basics of radiation hardening, essentials of clock design and impact of particle strikes on clocks in detail and presents design techniques for hardening complete clock systems in digital ICs.

Since the sequential elements play a key role in deciding the robustness of any clocking strategy, hardened-by-design implementations of triple-mode redundant (TMR) pulse clocked latches and physical design methodologies for using TMR master-slave flip-flops in application specific ICs (ASICs) are proposed. A novel temporal pulse clocked latch design for low power radiation hardened applications is also proposed. Techniques for designing custom RHBD clock distribution networks (clock spines) and ASIC clock trees for a radiation hardened microprocessor using standard CAD tools are presented. A framework for analyzing the vulnerabilities of clock trees in general, and study the parameters that contribute the most to the tree’s failure, including impact on controlled latches is provided. This is then used to design an integrated temporally redundant clock tree and pulse clocked flip-flop based clocking scheme that is robust to single event transients (SETs) and single event upsets (SEUs). Subsequently, designing robust clock delay lines for use in double data rate (DDRx) memory applications is studied in detail. Several modules of the proposed radiation hardened all-digital delay locked loop are designed and studied. Many of the circuits proposed in this entire body of work have been implemented and tested on a standard low-power 90-nm process.
Date Created
2015
Agent

Radiation transport analysis in chalcogenide-based devices and a neutron howitzer using MCNP

153200-Thumbnail Image.png
Description
As photons, electrons, and neutrons traverse a medium, they impart their energy in ways that are analytically difficult to describe. Monte Carlo methods provide valuable insight into understanding this behavior, especially when the radiation source or environment is too complex

As photons, electrons, and neutrons traverse a medium, they impart their energy in ways that are analytically difficult to describe. Monte Carlo methods provide valuable insight into understanding this behavior, especially when the radiation source or environment is too complex to simplify. This research investigates simulating various radiation sources using the Monte Carlo N-Particle (MCNP) transport code, characterizing their impact on various materials, and comparing the simulation results to general theory and measurements.

A total of five sources were of interest: two photon sources of different incident particle energies (3.83 eV and 1.25 MeV), two electron sources also of different energies (30 keV and 100 keV), and a californium-252 (Cf-252) spontaneous fission neutron source. Lateral and vertical programmable metallization cells (PMCs) were developed by other researchers for exposure to these photon and electron sources, so simplified PMC models were implemented in MCNP to estimate the doses and fluences. Dose rates measured around the neutron source and the predicted maximum activity of activation foils exposed to the neutrons were determined using MCNP and compared to experimental results obtained from gamma-ray spectroscopy.

The analytical fluence calculations for the photon and electron cases agreed with MCNP results, and differences are due to MCNP considering particle movements that hand calculations do not. Doses for the photon cases agreed between the analytical and simulated results, while the electron cases differed by a factor of up to 4.8. Physical dose rate measurements taken from the neutron source agreed with MCNP within the 10% tolerance of the measurement device. The activity results had a percent error of up to 50%, which suggests a need to further evaluate the spectroscopy setup.
Date Created
2014
Agent