155820-Thumbnail Image.png
Description
Modern-day integrated circuits are very capable, often containing more than a billion transistors. For example, the Intel Ivy Bridge 4C chip has about 1.2 billion transistors on a 160 mm2 die. Designing such complex circuits requires automation. Therefore, these designs

Modern-day integrated circuits are very capable, often containing more than a billion transistors. For example, the Intel Ivy Bridge 4C chip has about 1.2 billion transistors on a 160 mm2 die. Designing such complex circuits requires automation. Therefore, these designs are made with the help of computer aided design (CAD) tools. A major part of this custom design flow for application specific integrated circuits (ASIC) is the design of standard cell libraries. Standard cell libraries are a collection of primitives from which the automatic place and route (APR) tools can choose a collection of cells and implement the design that is being put together. To operate efficiently, the CAD tools require multiple views of each cell in the standard cell library. This data is obtained by characterizing the standard cell libraries and compiling the results in formats that the tools can easily understand and utilize.

My thesis focusses on the design and characterization of one such standard cell library in the ASAP7 7 nm predictive design kit (PDK). The complete design flow, starting from the choice of the cell architecture, design of the cell layouts and the various decisions made in that process to obtain optimum results, to the characterization of those cells using the Liberate tool provided by Cadence design systems Inc., is discussed in this thesis. The end results of the characterized library are used in the APR of a few open source register-transfer logic (RTL) projects and the efficiency of the library is demonstrated.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • FinFET Cell Library Design and Characterization
    Contributors
    Date Created
    2017
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Computer Engineering 2017

    Machine-readable links