Chip level implementation techniques for radiation hardened microprocessors

152388-Thumbnail Image.png
Description
Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors

Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors which are less susceptible to radiation present outside the earth's atmosphere, in other words their functioning is not disrupted even in presence of disruptive radiation. The presence of these particles forces the designers to come up with design techniques at circuit and chip levels to alleviate the errors which can be encountered in the functioning of microprocessors. Microprocessor evolution has been very rapid in terms of performance but the same cannot be said about its rad-hard counterpart. With the total data processing capability overall increasing rapidly, the clear lack of performance of the processors manifests as a bottleneck in any processing system. To design high performance rad-hard microprocessors designers have to overcome difficult design problems at various design stages i.e. Architecture, Synthesis, Floorplanning, Optimization, routing and analysis all the while maintaining circuit radiation hardness. The reference design `HERMES' is targeted at 90nm IBM G process and is expected to reach 500Mhz which is twice as fast any processor currently available. Chapter 1 talks about the mechanisms of radiation effects which cause upsets and degradation to the functioning of digital circuits. Chapter 2 gives a brief description of the components which are used in the design and are part of the consistent efforts at ASUVLSI lab culminating in this chip level implementation of the design. Chapter 3 explains the basic digital design ASIC flow and the changes made to it leading to a rad-hard specific ASIC flow used in implementing this chip. Chapter 4 talks about the triple mode redundant (TMR) specific flow which is used in the block implementation, delineating the challenges faced and the solutions proposed to make the flow work. Chapter 5 explains the challenges faced and solutions arrived at while using the top-level flow described in chapter 3. Chapter 6 puts together the results and analyzes the design in terms of basic integrated circuit design constraints.
Date Created
2013
Agent

Fully automated radiation hardened by design circuit construction

151352-Thumbnail Image.png
Description
A fully automated logic design methodology for radiation hardened by design (RHBD) high speed logic using fine grained triple modular redundancy (TMR) is presented. The hardening techniques used in the cell library are described and evaluated, with a focus on

A fully automated logic design methodology for radiation hardened by design (RHBD) high speed logic using fine grained triple modular redundancy (TMR) is presented. The hardening techniques used in the cell library are described and evaluated, with a focus on both layout techniques that mitigate total ionizing dose (TID) and latchup issues and flip-flop designs that mitigate single event transient (SET) and single event upset (SEU) issues. The base TMR self-correcting master-slave flip-flop is described and compared to more traditional hardening techniques. Additional refinements are presented, including testability features that disable the self-correction to allow detection of manufacturing defects. The circuit approach is validated for hardness using both heavy ion and proton broad beam testing. For synthesis and auto place and route, the methodology and circuits leverage commercial logic design automation tools. These tools are glued together with custom CAD tools designed to enable easy conversion of standard single redundant hardware description language (HDL) files into hardened TMR circuitry. The flow allows hardening of any synthesizable logic at clock frequencies comparable to unhardened designs and supports standard low-power techniques, e.g. clock gating and supply voltage scaling.
Date Created
2012
Agent

45-nm radiation hardened cache design

151217-Thumbnail Image.png
Description
Circuits on smaller technology nodes become more vulnerable to radiation-induced upset. Since this is a major problem for electronic circuits used in space applications, designers have a variety of solutions in hand. Radiation hardening by design (RHBD) is an approach,

Circuits on smaller technology nodes become more vulnerable to radiation-induced upset. Since this is a major problem for electronic circuits used in space applications, designers have a variety of solutions in hand. Radiation hardening by design (RHBD) is an approach, where electronic components are designed to work properly in certain radiation environments without the use of special fabrication processes. This work focuses on the cache design for a high performance microprocessor. The design tries to mitigate radiation effects like SEE, on a commercial foundry 45 nm SOI process. The design has been ported from a previously done cache design at the 90 nm process node. The cache design is a 16 KB, 4 way set associative, write-through design that uses a no-write allocate policy. The cache has been tested to write and read at above 2 GHz at VDD = 0.9 V. Interleaved layout, parity protection, dual redundancy, and checking circuits are used in the design to achieve radiation hardness. High speed is accomplished through the use of dynamic circuits and short wiring routes wherever possible. Gated clocks and optimized wire connections are used to reduce power. Structured methodology is used to build up the entire cache.
Date Created
2012
Agent

A structured design methodology for high performance VLSI arrays

150703-Thumbnail Image.png
Description
The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most

The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to a great extent and also makes the design regular, repetitive still achieving high performance. The method proposes making the complete design custom schematic but using the standard cells. This requires adding some custom cells to the already exhaustive library to optimize the design for performance. Once schematic is finalized, the designer places these standard cells in a spreadsheet, placing closely the cells in the critical paths. A Perl script then generates Cadence Encounter compatible placement file. The design is then routed in Encounter. Since designer is the best judge of the circuit architecture, placement by the designer will allow achieve most optimal design. Several designs like IPCAM, issue logic, TLB, RF and Cache designs were carried out and the performance were compared against the fully custom and ASIC flow. The TLB, RF and Cache were the part of the HEMES microprocessor.
Date Created
2012
Agent

Mixed signal design in thin film transistors

150352-Thumbnail Image.png
Description
Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the

Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the gap between the flexible sensors and digitized displays. Hence is the need to build the same. In this thesis, the feasibility of building mixed analog circuits in TFTs are explored and demonstrated. A flexible CMOS op-amp is demonstrated using a-Si:H and pentacene TFTs. The achieved performance is ¡Ö 50 dB of DC open loop gain with unity gain frequency (UGF) of 7 kHz. The op-amp is built on the popular 2 stage topology with the 2nd stage being cascoded to provide sufficient gain. A novel biasing circuit was successfully developed modifying the gm biasing circuit to retard the performance degradation as the TFTs aged. A switched capacitor 7 bit DAC was developed in only nMOS topology using a-Si:H TFTs, based on charge sharing concept. The DAC achieved a maximum differential non-linearity (DNL) of 0.6 least significant bit (LSB), while the maximum integral non-linearity (INL) was 1 LSB. TFTs were used as switches in this architecture; as a result the performance was quite unchanged even as the TFTs degraded. A 5 bit fully flash ADC was also designed using all nMOS a-Si:H TFTs. Gray coding was implemented at the output to avoid errors due to comparator meta-stability. Finally a 5 bit current steering DAC was also built using all nMOS a-Si:H TFTs. However, due to process variation, the DNL was increased to 1.2 while the INL was about 1.8 LSB. Measurements were made on the external stress effects on zinc indium oxide (ZIO) TFTs. Electrically induced stresses were studied applying DC bias on the gate and drain. These stresses shifted the device characteristics like threshold voltage and mobility. The TFTs were then mechanically stressed by stretching them across cylindrical structures of various radii. Both the subthreshold swing and mobility underwent significant changes when the stress was tensile while the change was minor under compressive stress, applied parallel to channel length.
Date Created
2011
Agent

An innovative radiation hardened by design flip-flop

149486-Thumbnail Image.png
Description
Radiation hardening by design (RHBD) has become a necessary practice when creating circuits to operate within radiated environments. While employing RHBD techniques has tradeoffs between size, speed and power, novel designs help to minimize these penalties. Space radiation is the

Radiation hardening by design (RHBD) has become a necessary practice when creating circuits to operate within radiated environments. While employing RHBD techniques has tradeoffs between size, speed and power, novel designs help to minimize these penalties. Space radiation is the primary source of radiation errors in circuits and two types of single event effects, single event upsets (SEU), and single event transients (SET) are increasingly becoming a concern. While numerous methods currently exist to nullify SEUs and SETs, special consideration to the techniques of temporal hardening and interlocking are explored in this thesis. Temporal hardening mitigates both SETs and SEUs by spacing critical nodes through the use of delay elements, thus allowing collected charge to be removed. Interlocking creates redundant nodes to rectify charge collection on one single node. This thesis presents an innovative, temporally hardened D flip-flop (TFF). The TFF physical design is laid out in the 130 nm TSMC process in the form of an interleaved multi-bit cell and the circuitry necessary for the flip-flop to be hardened against SETs and SEUs is analyzed with simulations verifying these claims. Comparisons are made to an unhardened D flip-flop through speed, size, and power consumption depicting how the RHBD technique used increases all three over an unhardened flip-flop. Finally, the blocks from both the hardened and the unhardened flip-flops being placed in Synthesis and auto-place and route (APR) design flows are compared through size and speed to show the effects of using the high density multi-bit layout. Finally, the TFF presented in this thesis is compared to two other flip-flops, the majority voter temporal/DICE flip-flop (MTDFF) and the C-element temporal/DICE flip-flop (CTDFF). These circuits are built on the same 130 nm TSMC process as the TFF and then analyzed by the same methods through speed, size, and power consumption and compared to the TFF and unhardened flip-flops. Simulations are completed on the MTDFF and CTDFF to show their strengths against D node SETs and SEUs as well as their weakness against CLK node SETs. Results show that the TFF is faster and harder than both the MTDFF and CTDFF.
Date Created
2010
Agent