Game Development for Smart Twisty Puzzles

Description
There exists extensive research on the use of twisty puzzles, such as the Rubik's Cube, in educational contexts to assist in developing critical thinking skills and in teaching abstract concepts, such as group theory. However, the existing research does not

There exists extensive research on the use of twisty puzzles, such as the Rubik's Cube, in educational contexts to assist in developing critical thinking skills and in teaching abstract concepts, such as group theory. However, the existing research does not consider the use of twisty puzzles in developing language proficiency. Furthermore, there remain methodological issues in integrating standard twisty puzzles into a class curriculum due to the ease with which erroneous cube twists occur, leading to a puzzle scramble that deviates from the intended teaching goal. To address these issues, an extensive examination of the "smart cube" market took place in order to determine whether a device that virtualizes twisty puzzles while maintaining the intuitive tactility of manipulating such puzzles can be employed both to fill the language education void and to mitigate the potential frustration experienced by students who unintentionally scramble a puzzle due to executing the wrong moves. This examination revealed the presence of Bluetooth smart cubes, which are capable of interfacing with a companion web or mobile application that visualizes and reacts to puzzle manipulations. This examination also revealed the presence of a device called the WOWCube, which is a 2x2x2 smart cube entertainment system that has 24 Liquid Crystal Display (LCD) screens, one for each face's square, enabling better integration of the application with the puzzle hardware. Developing applications both for the Bluetooth smart cube using React Native and for the WOWCube demonstrated the higher feasibility of developing with the WOWCube due to its streamlined development kit as well as its ability to tie the application to the device hardware, enhancing the tactile immersion of the players with the application itself. Using the WOWCube, a word puzzle game featuring three game modes was implemented to assist in teaching players English vocabulary. Due to its incorporation of features that enable dynamic puzzle generation and resetting, players who participated in a user survey found that the game was compelling and that it exercised their critical thinking skills. This demonstrates the feasibility of smart cube applications in both critical thinking and language skills.
Date Created
2023
Agent

Automating Generation of Web GUI from a Design Image

187326-Thumbnail Image.png
Description
Frontend development often involves the repetitive and time-consuming task of transforming a Graphical User interface (GUI) design into Frontend Code. The GUI design could either be an image or a design created on tools like Figma, Sketch, etc. This process

Frontend development often involves the repetitive and time-consuming task of transforming a Graphical User interface (GUI) design into Frontend Code. The GUI design could either be an image or a design created on tools like Figma, Sketch, etc. This process can be particularly challenging when the website designs are experimental and undergo multiple iterations before the final version gets deployed. In such cases, developers work with the designers to make continuous changes and improve the look and feel of the website. This can lead to a lot of reworks and a poorly managed codebase that requires significant developer resources. To tackle this problem, researchers are exploring ways to automate the process of transforming image designs into functional websites instantly. This thesis explores the use of machine learning, specifically Recurrent Neural networks (RNN) to generate an intermediate code from an image design and then compile it into a React web frontend code. By utilizing this approach, designers can essentially transform an image design into a functional website, granting them creative freedom and the ability to present working prototypes to stockholders in real-time. To overcome the limitations of existing publicly available datasets, the thesis places significant emphasis on generating synthetic datasets. As part of this effort, the research proposes a novel method to double the size of the pix2code [2] dataset by incorporating additional complex HTML elements such as login forms, carousels, and cards. This approach has the potential to enhance the quality and diversity of training data available for machine learning models. Overall, the proposed approach offers a promising solution to the repetitive and time-consuming task of transforming GUI designs into frontend code.
Date Created
2023
Agent

Deep Learning-Based Monocular SLAM

187325-Thumbnail Image.png
Description
SLAM (Simultaneous Localization and Mapping) is a problem that has existed for a long time in robotics and autonomous navigation. The objective of SLAM is for a robot to simultaneously figure out its position in space and map its environment.

SLAM (Simultaneous Localization and Mapping) is a problem that has existed for a long time in robotics and autonomous navigation. The objective of SLAM is for a robot to simultaneously figure out its position in space and map its environment. SLAM is especially useful and mandatory for robots that want to navigate autonomously. The description might make it seem like a chicken and egg problem, but numerous methods have been proposed to tackle SLAM. Before the rise in the popularity of deep learning and AI (Artificial Intelligence), most existing algorithms involved traditional hard-coded algorithms that would receive and process sensor information and convert it into some solvable sensor-agnostic problem. The challenge for these sorts of methods is having to tackle dynamic environments. The more variety in the environment, the poorer the results. Also due to the increase in computational power and the capability of deep learning-based image processing, visual SLAM has become extremely viable and maybe even preferable to traditional SLAM algorithms. In this research, a deep learning-based solution to the SLAM problem is proposed, specifically monocular visual SLAM which is solving the problem of SLAM purely with a singular camera as the input, and the model is tested on the KITTI (Karlsruhe Institute of Technology & Toyota Technological Institute) odometry dataset.
Date Created
2023
Agent

Exploring AI in Healthcare: How the Acceleration of Data Processing Can Impact Life Saving Diagnoses

165147-Thumbnail Image.png
Description

Artificial intelligence is one of the biggest topics being discussed in the realm of Computer Science and it has made incredible breakthroughs possible in so many different industries. One of the largest issues with utilizing computational resources in the health

Artificial intelligence is one of the biggest topics being discussed in the realm of Computer Science and it has made incredible breakthroughs possible in so many different industries. One of the largest issues with utilizing computational resources in the health industry historically is centered around the quantity of data, the specificity of conditions for accurate results, and the general risks associated with being incorrect in an analysis. Although these all have been major issues in the past, the application of artificial intelligence has opened up an entirely different realm of possibilities because accessing massive amounts of patient data, is essential for generating an extremely accurate model in machine learning. The goal of this project is to analyze tools and algorithm design techniques used in recent times to accelerate data processing in the realm of healthcare, but one of the most important discoveries is that the standardization of conditioned data being fed into the models is almost more important than the algorithms or tools being used combined.

Date Created
2022-05
Agent

Content Agnostic Game Based Stealth Assessment

161463-Thumbnail Image.png
Description
Serious or educational games have been a subject of research for a long time. They usually have game mechanics, game content, and content assessment all tied together to make a specialized game intended to impart learning of the associated content

Serious or educational games have been a subject of research for a long time. They usually have game mechanics, game content, and content assessment all tied together to make a specialized game intended to impart learning of the associated content to its players. While this approach is good for developing games for teaching highly specific topics, it consumes a lot of time and money. Being able to re-use the same mechanics and assessment for creating games that teach different contents would lead to a lot of savings in terms of time and money. The Content Agnostic Game Engineering (CAGE) Architecture mitigates the problem by disengaging the content from game mechanics. Moreover, the content assessment in games is often quite explicit in the way that it disturbs the flow of the players and thus hampers the learning process, as it is not integrated into the game flow. Stealth assessment helps to alleviate this problem by keeping the player engagement intact while assessing them at the same time. Integrating stealth assessment into the CAGE framework in a content-agnostic way will increase its usability and further decrease in game and assessment development time and cost. This research presents an evaluation of the learning outcomes in content-agnostic game-based assessment developed using the CAGE framework.
Date Created
2021
Agent

Intelli-Trail

131140-Thumbnail Image.png
Description
Intelli-Trail is a game where the player plays as a small blue man with the simple goal of reaching the purple door. The player will primarily interact with the game through combat. The game itself will react to

Intelli-Trail is a game where the player plays as a small blue man with the simple goal of reaching the purple door. The player will primarily interact with the game through combat. The game itself will react to the patterns in the players behavior to progressively become harder for the player to win.
Date Created
2020-05
Agent