Microbial Electrophotosynthesis: Connecting Live Cells to Artificial Electron Flux

191019-Thumbnail Image.png
Description
This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work,

This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work, a cathodic electron delivery system is employed for growth and synthesis. Photoinhibition leads to the dissipation energy and lower yield, and is a major obstacle to preventing green energy from competing with fossil fuels. However, the urgent need for alternative energy sources is driven by soaring energy consumption and rising atmospheric carbon dioxide levels. When developed, MEPS can contribute to a carbon capture technology while helping with energy demands. It is thought that if PSII electron flux can be replaced with an alternative source photosynthesis could be enhanced for more effective production. MEPS has the potential to address these challenges by serving as a carbon capture technology while meeting energy demands. The idea is to replace PSII electron flux with an alternative source, which can be enhanced for higher yields in light intensities not tolerated with PSII. This research specifically focuses on creating the initiation of electron flux between the cathode and the MEPS cells while controlling and measuring the system in real time. The successful proof-of-concept work shows that MEPS can indeed generate high-light-dependent current at intensities up to 2050 µmol photons m^‒2 s^‒1, delivering 113 µmol electrons h^‒1 mg-chl^‒1. The results were further developed to characterize redox tuning for electron delivery of flux to the photosynthetic electron transport chain and redox-based kinetic analysis to model the limitations of the MEPS system.
Date Created
2023
Agent

Dielectrophoresis to Analyze Mouse Hepatitis Coronavirus Particles

190986-Thumbnail Image.png
Description
Detection technologies and physical methods used for separation of complex molecules can be effective tools in research when applied to bioparticles including, but not limited to, bacteria, viruses, and proteins. Dielectrophoresis (DEP) is a technique that has been used in

Detection technologies and physical methods used for separation of complex molecules can be effective tools in research when applied to bioparticles including, but not limited to, bacteria, viruses, and proteins. Dielectrophoresis (DEP) is a technique that has been used in microfluidics for separation and concentration of bioparticles, with the benefits of not requiring custom primers, utilizing small sample sizes, and relatively quick separation times for rapid identification of pathogens such as viruses. As demonstrated in this study, a DEP device using polydimethylsiloxane (PDMS) as an insulator was used for the identification and separation of a mouse hepatitis coronavirus (MHV), a model coronavirus that only infects mice. Results indicate that, using 10 microliters of MHV test sample diluted in buffer, the virus can be identified and separated within 30 seconds using DC voltage of 800 V.
Date Created
2023
Agent

Differentiation of Staphylococcus Phenotypes Using Dielectrophoresis

Description

Dielectrophoresis is an analytical technique which involves electroosmotic flow, electrophoresis, and dielectrophoretic force. These factors, when in correct proportions for a given analyte, allow for dielectrophoretic trapping, otherwise known as dielectrophoretic capture. Non-uniform electric fields are required for this phenomenon,

Dielectrophoresis is an analytical technique which involves electroosmotic flow, electrophoresis, and dielectrophoretic force. These factors, when in correct proportions for a given analyte, allow for dielectrophoretic trapping, otherwise known as dielectrophoretic capture. Non-uniform electric fields are required for this phenomenon, and the device in this trial used to induce such an electric field was a gradient insulator-based design. Similar devices have been previously used to separate or identify a wide variety of analytes within solution. Much of the previous work has been focused on the differences in dielectrophoretic trapping between strains of bacteria, whereas this experiment focused on the differentiation of phenotypes within a single bacterial strain, Staphylococcus aureus isolate 35984. A control sample was tested, as well as a sample heated at 70oC for 15 minutes to induce phenotypic changes. The control sample was found to exhibit dielectrophoretic capture at a given gate at a potential of 800V and higher, whereas the heated sample was not observed to capture at any potential in this experiment, which reached a maximum of 1200V. Notably, neither of the samples were found to capture at or below 600V. The results of this experiment were encouraging, though it is worth noting that several experimental trials failed to produce any noteworthy results. As such, the procedure of this experiment should be refined to increase reproducibility of results.

Date Created
2023-05
Agent

Investigation of Chloramination and its Contribution to N-nitrosodimethylamine Formation in Drinking Water and the Atmosphere

171571-Thumbnail Image.png
Description
N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form

N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form as a disinfection byproduct in water treatment. Due to its carcinogenic nature, it is important to understand the mechanism of formation of NDMA in both engineered processes such as water treatment and in natural processes in fogs and clouds. NDMA might form through the reaction of chloramines with amines in both cases. This work analyzes polydiallyldimethyl ammonium chloride (PolyDADMAC), which is the most commonly used polymer at drinking water treatment plants and has the potential to form NDMA if free polymer is present during the chloramination (disinfection) process. The composition of industrial polyDADMAC solutions is not well understood and is difficult to analyze. This work uses 1H and 13C nuclear magnetic resonance (NMR) to analyze the polymer solution composition. Both 1H and 13C NMR allow investigation of the presence of trace impurities in the solution, gather structural information such as chain length, and inform on reaction mechanisms. The primary impurities of concern for NDMA formation were identified as dimethylamine (DMA) and short-chain oligomers of the polyDADMAC. 13C NMR was further used to confirm that NDMA likely forms from polyDADMAC via a Hofmann elimination. Chloramines might also form in fogs and clouds although to date the potential for chloramines to form NDMA in atmospheric fog and cloud droplets has not been investigated. This work uses computational modeling to determine that at reported atmospheric conditions, the chloramine pathway contributes to less than 0.01% NDMA formation. The numerical modeling identified a need for more atmospheric HOCl measurements. This work proposes a concept of using HOCl to react to form chloramine, which can react to form NDMA as a way to quantify atmospheric HOCl.
Date Created
2022
Agent

Using Syringe Pump for Concentrating Particles in Microfluidic Device

Description

An electric field can be applied to a microfluidic device in order to stop particle flow. Electroosmosis, electrophoresis, and dielectrophoresis act on the particles in different directions in the microfluidic channel, and when these forces create zero net force, the

An electric field can be applied to a microfluidic device in order to stop particle flow. Electroosmosis, electrophoresis, and dielectrophoresis act on the particles in different directions in the microfluidic channel, and when these forces create zero net force, the particle stops in the channel. The goal of the performed experiments is to investigate whether hydrostatic pressure generated by a syringe pump could help concentrate these particles and separate them from other contents. Introducing precise, adjustable hydrostatic pressure from the syringe pump provides another mechanism for controlling particle behavior. A microfluidic channel was crafted into a device connected to a syringe pump, and videos of 1 µm silica particles in the device were recorded under a microscope in order to show that samples could be infused into the device and concentrated or captured at a specific location in the channel using hydrostatic pressure. Capture of the particles occurred with and without controlled hydrostatic pressure, but these events occurred somewhat consistently at different voltages. In addition, particle movement in the channel with the syringe pump off was originally attributed to the electrokinetic forces. However, when compared to experiments without the syringe pump connected to the device, it became evident that the electrokinetic forces should have moved the particles in the opposite direction and that, in actuality, there is an inherent pressure in the device also affecting particle movement even when the syringe pump is not turned on.

Date Created
2022-12
Agent

Microfluidic Platforms for the Separation of Particles

168413-Thumbnail Image.png
Description
Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based

Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based dielectrophoresis in a microfluidic device. Thus, manipulating particles by size has been widely studied throughout the years. It has been shown that size-heterogeneity in organelles has been linked to multiple diseases from abnormal organelle size. Here, a mixture of two sizes of polystyrene beads (0.28 and 0.87 μm) was separated by a ratchet migration mechanism under a continuous flow (20 nL/min). Furthermore, to achieve high-throughput separation, different ratchet devices were designed to achieve high-volume separation. Recently, enormous efforts have been made to manipulate small size DNA and proteins. Here, a microfluidic device comprising of multiple valves acting as insulating constrictions when a potential is applied is presented. The tunability of the electric field gradient is evaluated by a COMSOL model, indicating that high electric field gradients can be reached by deflecting the valve at a certain distance. Experimentally, the tunability of the dynamic constriction was demonstrated by conducting a pressure study to estimate the gap distance between the valve and the substrate at different applied pressures. Finally, as a proof of principle, 0.87 μm polystyrene beads were manipulated by dielectrophoresis. These microfluidic platforms will aid in the understanding of size-heterogeneity of organelles for biomolecular assessment and achieve separation of nanometer-size DNA and proteins by dielectrophoresis.
Date Created
2021
Agent