Exploring Possible Fragmentation Patterns of 1-Bromobutane Using Time-of-Flight Mass Spectrometry and Computational Modeling

Description

The photodissociation of 1-bromobutane is explored using pump-probe spectroscopy and time-of-flight mass spectrometry. Fragments of bromobutane are constructed computationally and theoretical energies are calculated using Gaussian 16 software. It is determined that the dissociation of bromine from the parent molecule

The photodissociation of 1-bromobutane is explored using pump-probe spectroscopy and time-of-flight mass spectrometry. Fragments of bromobutane are constructed computationally and theoretical energies are calculated using Gaussian 16 software. It is determined that the dissociation of bromine from the parent molecule is the most observed fragmentation pathway arising from the excitation of the ground state parent molecule to a dissociative A state using two 400 nm, 3.1 eV pump photons. The dissociation energy of this pathway is 2.91 eV, leaving 3.3 eV of energy that is redistributed into the product fragments as vibrational energy. C4H9 has the highest relative intensity in the mass spectrum with a relative intensity of 1.00. It is followed by C2H5 and C2H4 at relative intensities of 0.73 and 0.29 respectively. Because of the negative correlation between C4H9 and these two fragments at positive time delays, it is concluded that most of these smaller molecules are formed from the further dissociation of the fragment C4H9 rather than any alternative pathways from the parent molecule. Thermodynamic analysis of these pathways has displayed the power of thermodynamic prediction as well as its limitations as it fails to consider kinetic limitations in dissociation reactions.

Date Created
2023-05
Agent

Differentiation of Staphylococcus Phenotypes Using Dielectrophoresis

Description

Dielectrophoresis is an analytical technique which involves electroosmotic flow, electrophoresis, and dielectrophoretic force. These factors, when in correct proportions for a given analyte, allow for dielectrophoretic trapping, otherwise known as dielectrophoretic capture. Non-uniform electric fields are required for this phenomenon,

Dielectrophoresis is an analytical technique which involves electroosmotic flow, electrophoresis, and dielectrophoretic force. These factors, when in correct proportions for a given analyte, allow for dielectrophoretic trapping, otherwise known as dielectrophoretic capture. Non-uniform electric fields are required for this phenomenon, and the device in this trial used to induce such an electric field was a gradient insulator-based design. Similar devices have been previously used to separate or identify a wide variety of analytes within solution. Much of the previous work has been focused on the differences in dielectrophoretic trapping between strains of bacteria, whereas this experiment focused on the differentiation of phenotypes within a single bacterial strain, Staphylococcus aureus isolate 35984. A control sample was tested, as well as a sample heated at 70oC for 15 minutes to induce phenotypic changes. The control sample was found to exhibit dielectrophoretic capture at a given gate at a potential of 800V and higher, whereas the heated sample was not observed to capture at any potential in this experiment, which reached a maximum of 1200V. Notably, neither of the samples were found to capture at or below 600V. The results of this experiment were encouraging, though it is worth noting that several experimental trials failed to produce any noteworthy results. As such, the procedure of this experiment should be refined to increase reproducibility of results.

Date Created
2023-05
Agent

Designing of a Dynamic Liquid Z-Scan Spectrometer

147874-Thumbnail Image.png
Description

This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed.

This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. The first design was capable of measuring the third order refraction index for glass, and found a value of 8.43 +- 0.392 x 10^(-16) cm^2/W for the glass sample, with the literature stating glass has a refraction index between 1-100 x 10^(-16) cm^2/W. The second design was capable of measuring the third order refraction index of liquids, and found values of 1.23 $\pm$ 0.121 $\e{-16}$ and 9.43 +- 1.00 x 10^(-17) cm^2/W for water and ethanol respectively, with literature values of 2.7 x 10^(-16) and 5.0 x 10^(-17) cm^2/W respectively. The third design gave inconclusive results due to extreme variability in testing, and and the fourth design outlined has not been tested yet due to time constraints.

Date Created
2021-05
Agent

A Computational Investigation of Theoretical GeSn Alloys

132169-Thumbnail Image.png
Description
In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating

In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating these novel alloys with industry-standard silicon technology. Unfortunately, incorporating a maximal amount of Sn into a Ge lattice has been difficult to achieve experimentally. At ambient conditions, pure Ge and Sn adopt cubic (α) and tetragonal (β) structures, respectively, however, to date the relative stability and structure of α and β phase GeSn alloys versus percent composition Sn has not been thoroughly studied. In this research project, computational tools were used to perform state-of-the-art predictive quantum simulations to study the structural, bonding and energetic trends in GeSn alloys in detail over a range of experimentally accessible compositions. Since recent X-Ray and vibrational studies have raised some controversy about the nanostructure of GeSn alloys, the investigation was conducted with ordered, random and clustered alloy models.
By means of optimized geometry analysis, pure Ge and Sn were found to adopt the alpha and beta structures, respectively, as observed experimentally. For all theoretical alloys, the corresponding αphase structure was found to have the lowest energy, for Sn percent compositions up to 90%. However at 50% Sn, the correspondingβ alloy energies are predicted to be only ~70 meV higher. The formation energy of α-phase alloys was found to be positive for all compositions, whereas only two beta formation energies were negative. Bond length distributions were analyzed and dependence on Sn incorporation was found, perhaps surprisingly, not to be directly correlated with cell volume. It is anticipated that the data collected in this project may help to elucidate observed complex vibrational properties in these systems.
Date Created
2019-05
Agent

Synthesis and Characterization of Laser Plasma that Produces Pseudocarbyne Using Laser Pulses

132590-Thumbnail Image.png
Description
Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹

Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain is composed of sp¹ and sp³ hybridized bonds, but it also incorporates nanoparticles such as gold or possibly silver to stabilize the chain. The polyyne generated in this process is called pseudocarbyne due to its striking resemblance to the theoretical carbyne. The formation of these carbon chains is yet to be fully understood, but significant progress has been made in determining the temperature of the plasma in which the pseudocarbyne is formed. When a 532 nm pulsed laser with a pulsed energy of 250 mJ and pulse length of 10ns is used to ablate a gold target, a peak temperature of 13400 K is measured. When measured using Laser-Induced Breakdown spectroscopy (LIBS) the average temperature of the neutral carbon plasma over one second was 4590±172 K. This temperature strongly suggests that the current theoretical model used to describe the temperature at which pseudocarbyne generates is accurate.
Date Created
2019-05
Agent

Dielectrophoresis of Gold Nanoparticles

133054-Thumbnail Image.png
Description
Dielectrophoretic trapping is a separatory/analytical method that is capable of achieving high levels of analyte differentiation using a combination of electroosmotic flow, electrophoresis, and dielectrophoresis. The form of dielectrophoretic device used in these trials was of a gradient insulator-based design

Dielectrophoretic trapping is a separatory/analytical method that is capable of achieving high levels of analyte differentiation using a combination of electroosmotic flow, electrophoresis, and dielectrophoresis. The form of dielectrophoretic device used in these trials was of a gradient insulator-based design that induced the non-uniform electric fields necessary for dielectrophoretic trapping to occur. Development of such microfluidic devices began in the early 2000s and has produced several successful trials and refinements since then. Improvements have led to the ability of these devices to separate analytes to extremely high degrees of resolution as was demonstrated by the simultaneous separation of antibiotic resistant and antibiotic susceptible strains of bacteria in other experiments. The majority of analytes examined with these microfluidic devices have been biological in nature and on the scale of micrometers in size. The objective of this experiment was to test the lower limit of the device's resolution by attempting to use dielectrophoresis to trap gold nanoparticles via the balancing point between electrophoretic and dielectrophoretic mobilities. Trials successfully captured 10 nm fluorophore tagged gold nanoparticles at a mobility ratio of 6.16 x 1011 V2/m3, 60 nm citrate-capped gold nanoparticles at approximately 3.61 x 1010 V2/m3, and bare 10 nm gold nanoparticle aggregates at both 1.63 x 1010 V2/m3 and 1.68 x 1010 V2/m3. The corresponding voltages that were applied to achieve trapping were -1500 V, -2000 V, and -1500 V respectively. These findings were promising but reproducibility of the results was very low, largely due to matters of contaminants entering the devices and preventing the even, continuous flow of the analyte solution. Refinement of the analytical process should be pursued.
Date Created
2018-12
Agent

Life In Motion: Visualizing Biomacromolecules By Time-Resolved Serial Femtosecond Crystallography

156550-Thumbnail Image.png
Description
Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of

Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of molecules in nano- or microcrystals and then using femtosecond X-ray laser pulses produced by an X-ray free electron laser to collect near-instantaneous data on the crystal. A full data set can be collected by merging a sufficient number of these patterns together and multiple data sets can be collected at different points along the reaction pathway by manipulating the delay time between reaction initiation and the probing X-rays. In this way, these ‘snapshot’ structures can be viewed in series to make a molecular movie, allowing for atomic visualization of a molecule in action and, thereby, a structural basis for the mechanism and function of a given biomacromolecule.

This dissertation presents results towards this end, including the successful implementations of the first diffusive mixing chemoactivated reactions and ultrafast dynamics in the femtosecond regime. The primary focus is on photosynthetic membrane proteins and enzymatic drug targets, in pursuit of strategies for sustainable energy and medical advancement by gaining understanding of the structure-function relationships evolved in nature. In particular, photosystem I, photosystem II, the complex of photosystem I and ferredoxin, and 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase are reported on, from purification and isolation, to crystallogenesis, to experimental design and data collection and subsequent interpretation of results and novel insights gained.
Date Created
2018
Agent