Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other…
Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other available treatments for antiviral therapeutics. It is hypothesized that a ꞵ-cyclodextrin platform can be modified through a few-step reaction process to develop a ꞵ-cyclodextrin-DBCO-GFP nanobody. The findings of this few-step reaction support the general approach of conjugating the ꞵ-cyclodextrin derivative to GPF nanobody for developing a cyclodextrin antiviral scaffold.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Molecular engineering is an emerging field that aims to create functional devices for modular purposes, particularly bottom-up design of nano-assemblies using mechanical and chemical methods to perform complex tasks. In this study, we present a novel method for constructing an…
Molecular engineering is an emerging field that aims to create functional devices for modular purposes, particularly bottom-up design of nano-assemblies using mechanical and chemical methods to perform complex tasks. In this study, we present a novel method for constructing an RNA clamp using circularized RNA and a broccoli aptamer for fluorescence sensing. By designing a circular RNA with the broccoli aptamer and a complementary DNA strand, we created a molecular clamp that can stabilize the aptamer. The broccoli aptamer displays enhanced fluorescence when bound to its ligand, DFHBI-1T. Upon induction with this small molecule, the clamp can exhibit or destroy fluorescence. We demonstrated that we could control the fluorescence of the RNA clamp by introducing different complementary DNA strands, which regulate the level of fluorescence. Additionally, we designed allosteric control by introducing new DNA strands, making the system reversible. We explored the use of mechanical tension to regulate RNA function by attaching a spring-like activity through the RNA clamp to two points on the RNA surface. By adjusting the stiffness of the spring, we could control the tension between the two points and induce reversible conformational changes, effectively turning RNA function on and off. Our approach offers a simple and versatile method for creating RNA clamps with various applications, including RNA detection, regulation, and future nanodevice design. Our findings highlight the crucial role of mechanical forces in regulating RNA function, paving the way for developing new strategies for RNA manipulation, and potentially advancing molecular engineering. Although the current work is ongoing, we provide current progress of both theoretical and experimental calculations based on our findings.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
DNA nanotechnology, the self-assembly of DNA into 2D and 3D nanoscale structures facilitated via Watson and Crick base pairing, provides alternative solutions for biomedical challenges, especially for therapeutic cargo delivery, because it is easily fabricated, exhibits low cytotoxicity, and high…
DNA nanotechnology, the self-assembly of DNA into 2D and 3D nanoscale structures facilitated via Watson and Crick base pairing, provides alternative solutions for biomedical challenges, especially for therapeutic cargo delivery, because it is easily fabricated, exhibits low cytotoxicity, and high biocompatibility. However, the stability of these DNA nanostructures (DN) under cellular environment presents an issue due to their requirements for high salt conditions and susceptibility to nuclease degradation. Furthermore, DNs are typically trapped in endolysosomal compartments rather than the cytosol, where most of their cargo must be delivered. Many attempts to mitigate the stability issue have been made in recent years. Previously, our lab designed an endosomal escape peptide, Aurein 1.2 (denoted “EE, for endosomal escape)”, combined with a decalysine sequence (K10) proven to electrostatically adhere to and protect DNs under cell culture conditions. Unfortunately, this molecule, termed K10-EE, only resulted in endosomal escape in absence of serum due to formation of a protein corona on the surface of the coated DN.6 Therefore, we now propose to electrostatically coat the DN with a polymer composed of decalysine (K10), polyethylene glycol (PEG, which demonstrates antibiofouling properties), and peptide EE: K10- PEG1k-EE. Described herein are the attempted synthetic schemes of K10-PEG1k-EE, the successful synthesis of alternative products, K10-(EK)5 and K10-(PEG12)2-EE, and their resulting impacts on DN stability under biological conditions. Coating of the K10-(EK)5 with a DNA barrel origami demonstrated inefficient stabilizing capability in serum. Future studies include testing K10- (PEG12)2-EE protection for a variety of nucleic acid-based structures.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
With climate change threatening to increase the frequency of global pandemics, the need for quick and adaptable responses to novel viruses will become paramount. DNA nanotechnology offers a highly customizable, biocompatible approach to combating novel outbreaks. For any DNA nanotechnology-based…
With climate change threatening to increase the frequency of global pandemics, the need for quick and adaptable responses to novel viruses will become paramount. DNA nanotechnology offers a highly customizable, biocompatible approach to combating novel outbreaks. For any DNA nanotechnology-based therapeutic to have future success in vivo, the structure must be able to withstand serological conditions for an extended time period. In this study, the stability of a wireframe DNA snub cube with attached nbGFP used to bind a nonessential viral epitope on Pseudorabies virus is evaluated in vitro both with and without one of two modifications designed to enhance stability: 1) the use of trivalent spermidine cations during thermal annealing of the nanostructure, and 2) the introduction of a polylysine-polyethylene glycol coating to the conjugated nanostructure. The design, synthesis, and purification of the multivalent inhibitor were also evaluated and optimized. Without modification, the snub cube nanostructure was stable for up to 8 hours in culture media supplemented with 10% FBS. The spermidine-annealed nanostructures demonstrated lesser degrees of stability and greater degradation than the unmodified structures, whereas the polylysine-coated structures demonstrated equivalent stability at lower valencies and enhanced stability at the highest valency of the snub cube inhibitor. These results support the potential for the polylysine-polyethylene glycol coating as a potential method for enhancing the stability of the snub cube for future in vivo applications.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of…
Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid (DNA) interactions to detect 10 different analytes including antibiotics such as tetracyclines and erythromycin. The biosensor harnesses the multi-turnover collateral cleavage activity of Cas12a to provide signal amplification in less than an hour that can be monitored using fluorescence as well as on paper based diagnostic devices. In addition, the functionality of this assay was preserved when testing tap water and wastewater spiked with doxycycline. Overall, this biosensor has potential to expand the range of small molecule detection and can be used to identify environmental contaminants.
In second part of the dissertation, interactions between nonribosomal peptide synthetases (NRPS) and ribonucleic acid (RNA) were utilized for programming the synthesis of nonribosomal peptides. RNA scaffolds harboring peptide binding aptamers and interconnected using kissing loops to guide the assembly of NRPS modules modified with corresponding aptamer-binding peptides were built. A successful chimeric assembly of Ent synthetase modules was shown that was characterized by the production of Enterobactin siderophore. It was found that the programmed RNA/NRPS assembly could achieve up to 60% of the yield of wild-type biosynthetic pathway of the iron-chelator enterobactin.
Finally, a cas12a-based detection method for discriminating short tandem repeats where a toehold exchange mechanism was designed to distinguish different numbers of repeats found in Huntington’s disease, Spinocerebellar ataxia type 10 and type 36. It was observed that the system discriminates well when lesser number of repeats are present and provides weaker resolution as the size of DNA strands increases. Additionally, the system can identify Kelch13 mutations such as P553L, N458Y and F446I from the wildtype sequence for Artemisinin resistance detection.
This dissertation demonstrates the great utility of harnessing protein-nucleic acid interactions to construct biomolecular devices for detecting clinically relevant nucleic acid mutations, a variety of small molecule analyte and programming the production of useful molecules.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Microfluidics has enabled many biological and biochemical applications such as high-throughput drug testing or point-of-care diagnostics. Dielectrophoresis (DEP) has recently achieved prominence as a powerful microfluidic technique for nanoparticle separation. Novel electric field-assisted insulator-based dielectrophoresis (iDEP) microfluidic devices have been…
Microfluidics has enabled many biological and biochemical applications such as high-throughput drug testing or point-of-care diagnostics. Dielectrophoresis (DEP) has recently achieved prominence as a powerful microfluidic technique for nanoparticle separation. Novel electric field-assisted insulator-based dielectrophoresis (iDEP) microfluidic devices have been employed to fractionate rod-shaped nanoparticles like Single-walled carbon nanotubes (SWNTs) and manipulate biomolecules like Deoxyribonucleic acid (DNA) and proteins. This dissertation involves the development of traditional as well as 3D-printed iDEP devices for the manipulation of nm-to-µm scale analytes. First, novel iDEP microfluidic constriction-based sorting devices were developed to introduce inhomogeneous electric field gradients to fractionate SWNTs by length. SWNTs possess length-specific optical and electrical properties, expanding their potential applications for future nanoscale devices. Standard synthesis procedures yield SWNTs in large-length polydispersity and chirality. Thus, an iDEP-based fractionation tool for desired lengths of SWNTs may be beneficial. This dissertation presents the first study of DEP characterization and fractionation of SWNTs using an iDEP microfluidic device. Using this iDEP constriction sorter device, two different length distributions of SWNTs were sorted with a sorting efficiency of >90%. This study provides the fundamentals of fractionating SWNTs by length, which can help separate and purify SWNTs for future nanoscale-based applications. Manipulation of nm-scale analytes requires achieving high electric field gradients in an iDEP microfluidic device, posing one of the significant challenges for DEP applications. Introducing nm-sized constrictions in an iDEP device can help generate a higher electric field gradient. However, this requires cumbersome and expensive fabrication methods. In recent years, 3D printing has drawn tremendous attention in microfluidics, alleviating complications associated with complex fabrication methods. A high-resolution 3D-printed iDEP device was developed and fabricated for iDEP-based manipulation of analytes. A completely 3D-printed device with 2 µm post-gaps was realized, and fluorescent polystyrene (PS) beads, λ-DNA, and phycocyanin protein trapping were demonstrated. Furthermore, a nm-resolution 3D-printed iDEP device was successfully printed. In the future, these high-resolution 3D-printed devices may lead to exploring DEP characteristics of nanoscale analytes like single protein molecules and viruses. The electric field-assisted unique fractionation phenomena in microfluidic platforms will become a critical solution for nanoparticle separation and manipulating biomolecules.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Nucleic acid nanotechnology is a field of nanoscale engineering where the sequences of deoxyribonucleicacid (DNA) and ribonucleic acid (RNA) molecules are carefully designed to create self–assembled nanostructures with higher spatial resolution than is available to top–down fabrication methods. In the…
Nucleic acid nanotechnology is a field of nanoscale engineering where the sequences of deoxyribonucleicacid (DNA) and ribonucleic acid (RNA) molecules are carefully designed to create self–assembled nanostructures with higher spatial resolution than is available to top–down fabrication methods. In the 40 year history
of the field, the structures created have scaled from small tile–like structures constructed from a few hundred
individual nucleotides to micron–scale structures assembled from millions of nucleotides using the technique
of “DNA origami”. One of the key drivers of advancement in any modern engineering field is the parallel
development of software which facilitates the design of components and performs in silico simulation of the
target structure to determine its structural properties, dynamic behavior, and identify defects. For nucleic acid
nanotechnology, the design software CaDNAno and simulation software oxDNA are the most popular choices
for design and simulation, respectively. In this dissertation I will present my work on the oxDNA software
ecosystem, including an analysis toolkit, a web–based graphical interface, and a new molecular visualization
tool which doubles as a free–form design editor that covers some of the weaknesses of CaDNAno’s lattice–based design paradigm. Finally, as a demonstration of the utility of these new tools I show oxDNA simulation
and subsequent analysis of a nanoscale leaf–spring engine capable of converting chemical energy into dynamic motion. OxDNA simulations were used to investigate the effects of design choices on the behavior of
the system and rationalize experimental results.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Two distinct aspects of synthetic biology were investigated: the development of viral structures for new methods of studying self-assembly and nanomanufacturing, and the designs of genetic controls systems based on controlling the secondary structure of nucleic acids. Viral structures have…
Two distinct aspects of synthetic biology were investigated: the development of viral structures for new methods of studying self-assembly and nanomanufacturing, and the designs of genetic controls systems based on controlling the secondary structure of nucleic acids. Viral structures have been demonstrated as building blocks for molecular self-assembly of diverse structures, but the ease with which viral genomes can be modified to create specific structures depends on the mechanisms by which the viral coat proteins self-assemble. The experiments conducted demonstrate how the mechanisms that guide bacteriophage lambda’s self-assembly make it a useful and flexible platform for further research into biologically enabled self-assembly. While the viral platform investigations focus on the creation of new structures, the genetic control systems research focuses on new methods for signal interpretation in biological systems. Regulators of genetic activity that operate based on the secondary structure formation of ribonucleic acid (RNA), also known as riboswitches, are genetically compact devices for controlling protein translation. The toehold switch ribodevice can be modified to enable multiplexed logical operations with RNA inputs, requiring no additional protein transcription factors to regulate activity, but they cannot receive chemical inputs. RNA sequences generated to bind to specific chemicals, known as aptamers, can be used in riboswitches to confer genetic activity upon binding their target chemical. But attempts to use aptamers for logical operations and genetic circuits are difficult to generalize due to differences in sequence and binding strength. The experiments conducted demonstrate a ribodevice structure in which aptamers can be used semi-interchangeably to translate chemical inputs into the toehold switch paradigm, marrying the programmability and orthogonality of toehold switches with the broad sensing potential of aptamer-based ribodevices.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Molecular recognition forms the basis of all protein interactions, and therefore is crucial for maintaining biological functions and pathways. It can be governed by many factors, but in case of proteins and peptides, the amino acids sequences of the interacting…
Molecular recognition forms the basis of all protein interactions, and therefore is crucial for maintaining biological functions and pathways. It can be governed by many factors, but in case of proteins and peptides, the amino acids sequences of the interacting entities play a huge role. It is molecular recognition that helps a protein identify the correct sequences residues necessary for an interaction, among the vast number of possibilities from the combinatorial sequence space. Therefore, it is fundamental to study how the interacting amino acid sequences define the molecular interactions of proteins. In this work, sparsely sampled peptide sequences from the combinatorial sequence space were used to study the molecular recognition observed in proteins, especially monoclonal antibodies. A machine learning based approach was used to study the molecular recognition characteristics of 11 monoclonal antibodies, where a neural network (NN) was trained on data from protein binding experiments performed on high-throughput random-sequence peptide microarrays. The use of random-sequence microarrays allowed for the peptides to be sparsely sampled from sequence space. Post-training, a sequence vs. binding relationship was deduced by the NN, for each antibody. This in silico relationship was then extended to larger libraries of random peptides, as well as to the biologically relevant sequences (target antigens, and proteomes). The NN models performed well in predicting the pertinent interactions for 6 out of the 11 monoclonal antibodies, in all aspects. The interactions of the other five monoclonal antibodies could not be predicted well by the models, due to their poor recognition of the residues that were omitted from the array. Furthermore, NN predicted sequence vs. binding relationships for 3 other proteins were experimentally probed using surface plasmon resonance (SPR). This was done to explore the relationship between the observed and predicted binding to the arrays and the observed binding on different assay platforms. It was noted that there was a general motif dependent correlation between predicted and SPR-measured binding. This study also indicated that a combined reiterative approach using in silico and in vitro techniques is a powerful tool for optimizing the selectivity of the protein-binding peptides.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Mycobacterial infections, as represented by leprosy and tuberculosis, have persisted as human pathogens for millennia. Their environmental counterparts, nontuberculous mycobacteria (NTM), are commodious infectious agents endowed with extensive innate and acquired antimicrobial resistance. The current drug development process selects for…
Mycobacterial infections, as represented by leprosy and tuberculosis, have persisted as human pathogens for millennia. Their environmental counterparts, nontuberculous mycobacteria (NTM), are commodious infectious agents endowed with extensive innate and acquired antimicrobial resistance. The current drug development process selects for antibiotics with high specificity for definitive targets within bacterial metabolic and replication pathways. Because these compounds demonstrate limited efficacy against mycobacteria, novel antimycobacterial agents with unconventional mechanisms of action were identified. Two highly resistant NTMs, Mycobacterium abscessus (Mabs) a rapid-growing respiratory, skin, and soft tissue pathogen, and Mycobacterium ulcerans (MU), the causative agent of Buruli ulcer, were selected as targets. Compounds that indicated antimicrobial activity against other highly resistant pathogens were selected for initial screening. Antimicrobial peptides (AMPs) have demonstrated activity against a variety of bacterial pathogens, including mycobacterial species. Designed antimicrobial peptides (dAMPs), rationally-designed and synthetic contingents, combine iterative features of natural AMPs to achieve superior antimicrobial activity in resistant pathogens. Initial screening identified two dAMPs, RP554 and RP557, with bactericidal activity against Mabs. Clay-associated ions have previously demonstrated bactericidal activity against MU. Synthetic and customizable aluminosilicates have also demonstrated adsorption of bacterial cells and toxins. On this basis, two aluminosilicate materials, geopolymers (GP) and ion-exchange nanozeolites (IE-nZeos), were screened for antimicrobial activity against MU and its fast-growing relative, Mycobacterium marinum (Mmar). GPs demonstrated adsorption of MU cells and mycolactone, a secreted, lipophilic toxin, whereas Cu-nZeos and Ag-nZeos demonstrated antibacterial activity against MU and Mmar. Cumulatively, these results indicate that an integrative drug selection process may yield a new generation of antimycobacterial agents.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)