Integrating Haptic Devices and Mixed Reality for Enhanced Learning Experiences

193693-Thumbnail Image.png
Description
Virtual reality (VR) provides significant opportunities for students to experience immersive education. In VR, students can travel to the international space station, or go through a science experiment at home. However, the current tactile feedback provided by these systems do

Virtual reality (VR) provides significant opportunities for students to experience immersive education. In VR, students can travel to the international space station, or go through a science experiment at home. However, the current tactile feedback provided by these systems do not feel real. Controllers do not provide the same tactile feedback experienced in the physical world. This dissertation aims to bridge the gap between the virtual and physical learning environments through the development of novel haptic devices capable of emulating tactile sensations found in physical science labs. My research explores haptic devices that can emulate the sensations of fluids in vessels within the virtual environment. Fluid handling is a cornerstone experience of science labs. I also explore how to emulate the handling of other science equipment. I describe and research on four novel devices. These are 1) SWISH: A shifting-weight interface of simulated hydrodynamics for haptic perception of virtual fluid vessels, 2) Geppetteau, 3) Vibr-eau, and 4) Pneutouch. SWISH simulates the sensation of virtual fluids in vessels using a rack and pinion mechanism, while Geppetteau employs a string-driven mechanism to provide haptic feedback for a variety of vessel shapes. Vibr-eau utilizes vibrotactile actuators in the vessel’s interior to emulate the behavior of virtual liquids. Finally, Pneutouch enables users to interact with virtual objects through pneumatic inflatables. Through systematic evaluations and comparisons with baseline comparisons, the usability and effectiveness of these haptic devices in enhancing virtual experiences is demonstrated. The development of these haptic mechanisms and interfaces represents a significant step towards creating transformative educational tools that provide customizable, hands-on learning environments in both Mixed (MR) and Virtual Reality (VR) - now called XR. This dissertation contributes to advancing the field of haptics for virtual education and lays the foundation for future research in immersive learning technologies.
Date Created
2024
Agent

Exploring Multiplayer Haptics using a Wrist-Worn Interface for Pneumatic Inflatables

193470-Thumbnail Image.png
Description
This thesis explores the development and integration of a wrist-worn pneumatic haptic interface, Pneutouch, into multiplayer virtual reality (VR) environments. The study investigates the impact of haptics on multiplayer experiences, with a specific focus on presence, collaboration, and communication. Evaluation

This thesis explores the development and integration of a wrist-worn pneumatic haptic interface, Pneutouch, into multiplayer virtual reality (VR) environments. The study investigates the impact of haptics on multiplayer experiences, with a specific focus on presence, collaboration, and communication. Evaluation and investigation were performed using three mini-games, each targeting specific interactions and investigating presence, collaboration, and communication. It was found that haptics enhanced user presence and object realism, increased user seriousness towards tasks, and shifted the focus of interactions from user-user to user-object. In collaborative tasks, haptics increased realism but did not improve efficiency for simple tasks. In communication tasks, a unique interaction modality, termed "haptic mirroring," was introduced, which explored a new form of communication that could be implemented with haptic devices. It was found that with new communication modalities, users experience an associated learning curve. Together, these findings suggest a new set of multiplayer haptic design considerations, such as how haptics increase seriousness, shift focus from social to physical interactions, generally increase realism but decrease task efficiency, and have associated learning curves. These findings contribute to the growing body of research on haptics in VR, particularly in multiplayer settings, and provide insights that can be further investigated or utilized in the implementation of VR experiences.
Date Created
2024
Agent

Software-Defined Imaging for Embedded Computer Vision: Adaptive Subsampling and Event-based Visual Navigation

190757-Thumbnail Image.png
Description
Huge advancements have been made over the years in terms of modern image-sensing hardware and visual computing algorithms (e.g. computer vision, image processing, computational photography). However, to this day, there still exists a current gap between the hardware and software

Huge advancements have been made over the years in terms of modern image-sensing hardware and visual computing algorithms (e.g. computer vision, image processing, computational photography). However, to this day, there still exists a current gap between the hardware and software design in an imaging system, which silos one research domain from another. Bridging this gap is the key to unlocking new visual computing capabilities for end applications in commercial photography, industrial inspection, and robotics. This thesis explores avenues where hardware-software co-design of image sensors can be leveraged to replace conventional hardware components in an imaging system with software for enhanced reconfigurability. As a result, the user can program the image sensor in a way best suited to the end application. This is referred to as software-defined imaging (SDI), where image sensor behavior can be altered by the system software depending on the user's needs. The scope of this thesis covers the development and deployment of SDI algorithms for low-power computer vision. Strategies for sparse spatial sampling have been developed in this thesis for power optimization of the vision sensor. This dissertation shows how a hardware-compatible state-of-the-art object tracker can be coupled with a Kalman filter for energy gains at the sensor level. Extensive experiments reveal how adaptive spatial sampling of image frames with this hardware-friendly framework offers attractive energy-accuracy tradeoffs. Another thrust of this thesis is to demonstrate the benefits of reinforcement learning in this research avenue. A major finding reported in this dissertation shows how neural-network-based reinforcement learning can be exploited for the adaptive subsampling framework to achieve improved sampling performance, thereby optimizing the energy efficiency of the image sensor. The last thrust of this thesis is to leverage emerging event-based SDI technology for building a low-power navigation system. A homography estimation pipeline has been proposed in this thesis which couples the right data representation with a differential scale-invariant feature transform (SIFT) module to extract rich visual cues from event streams. Positional encoding is leveraged with a multilayer perceptron (MLP) network to get robust homography estimation from event data.
Date Created
2023
Agent

System Solutions Towards High-Precision Visual Computing at Low Power

189373-Thumbnail Image.png
Description
Efficient visual sensing plays a pivotal role in enabling high-precision applications in augmented reality and low-power Internet of Things (IoT) devices. This dissertation addresses the primary challenges that hinder energy efficiency in visual sensing: the bottleneck of pixel traffic across

Efficient visual sensing plays a pivotal role in enabling high-precision applications in augmented reality and low-power Internet of Things (IoT) devices. This dissertation addresses the primary challenges that hinder energy efficiency in visual sensing: the bottleneck of pixel traffic across camera and memory interfaces and the energy-intensive analog readout process in image sensors. To overcome the bottleneck of pixel traffic, this dissertation proposes a visual sensing pipeline architecture that enables application developers to dynamically adapt the spatial resolution and update rates for specific regions within the scene. By selectively capturing and processing high-resolution frames only where necessary, the system significantly reduces energy consumption associated with memory traffic. This is achieved by encoding only the relevant pixels from the commercial image sensors with standard raster-scan pixel read-out patterns, thus minimizing the data stored in memory. The stored rhythmic pixel region stream is decoded into traditional frame-based representations, enabling seamless integration into existing video pipelines. Moreover, the system includes runtime support that allows flexible specification of the region labels, giving developers fine-grained control over the resolution adaptation process. Experimental evaluations conducted on a Xilinx Field Programmable Gate Array (FPGA) platform demonstrate substantial reductions of 43-64% in interface traffic, while maintaining controllable task accuracy. In addition to the pixel traffic bottleneck, the dissertation tackles the energy intensive analog readout process in image sensors. To address this, the dissertation proposes aggressive scaling of the analog voltage supplied to the camera. Extensive characterization on off-the-shelf sensors demonstrates that analog voltage scaling can significantly reduce sensor power, albeit at the expense of image quality. To mitigate this trade-off, this research develops a pipeline that allows application developers to adapt the sensor voltage on a frame-by-frame basis. A voltage controller is integrated into the existing Raspberry Pi (RPi) based video streaming pipeline, generating the sensor voltage. On top of that, the system provides a software interface for vision applications to specify the desired voltage levels. Evaluation of the system across a range of voltage scaling policies on popular vision tasks demonstrates that the technique can deliver up to 73% sensor power savings while maintaining reasonable task fidelity.
Date Created
2023
Agent

Networked System for Volumetric Athletic Coaching in Augmented Reality

187854-Thumbnail Image.png
Description
Traditional sports coaching involves face-to-face instructions with athletes or playingback 2D videos of athletes’ training. However, if the coach is not in the same area as the athlete, then the coach will not be able to see the athlete’s full body

Traditional sports coaching involves face-to-face instructions with athletes or playingback 2D videos of athletes’ training. However, if the coach is not in the same area as the athlete, then the coach will not be able to see the athlete’s full body and thus cannot give precise guidance to the athlete, limiting the athlete’s improvement. To address these challenges, this paper proposes Augmented Coach, an augmented reality platform where coaches can view, manipulate and comment on athletes’ movement volumetric video data remotely via the network. In particular, this work includes a). Capturing the athlete’s movement video data with Kinects and converting it into point cloud format b). Transmitting the point cloud data to the coach’s Oculus headset via 5G or wireless network c). Coach’s commenting on the athlete’s joints. In addition, the evaluation of Augmented Coach includes an assessment of its performance from five metrics via the wireless network and 5G network environment, but also from the coaches’ and athletes’ experience of using it. The result shows that Augmented Coach enables coaches to instruct athletes from a distance and provide effective feedback for correcting athletes’ motions under the network.
Date Created
2023
Agent

B-AWARE: Blockage Aware RSU Scheduling for 5G Enabled Autonomous Vehicles

187599-Thumbnail Image.png
Description
5G Millimeter Wave (mmWave) technology holds great promise for Connected Autonomous Vehicles (CAVs) due to its ability to achieve data rates in the Gbps range. However, mmWave suffers high beamforming overhead and requirement of line of sight (LOS) to maintain

5G Millimeter Wave (mmWave) technology holds great promise for Connected Autonomous Vehicles (CAVs) due to its ability to achieve data rates in the Gbps range. However, mmWave suffers high beamforming overhead and requirement of line of sight (LOS) to maintain a strong connection. For Vehicle-to-Infrastructure (V2I) scenarios, where CAVs connect to roadside units (RSUs), these drawbacks become apparent. Because vehicles are dynamic, there is a large potential for link blockages, which in turn is detrimental to the connected applications running on the vehicle, such as cooperative perception and remote driver takeover. Existing RSU selection schemes base their decisions on signal strength and vehicle trajectory alone, which is not enough to prevent the blockage of links. Most recent CAVs motion planning algorithms routinely use other vehicle's near-future plans, either by explicit communication among vehicles, or by prediction. In this thesis, I make use of this knowledge (of the other vehicle's near future path plans) to further improve the RSU association mechanism for CAVs. I solve the RSU association problem by converting it to a shortest path problem with the objective to maximize the total communication bandwidth. Evaluations of B-AWARE in simulation using Simulated Urban Mobility (SUMO) and Digital twin for self-dRiving Intelligent VEhicles (DRIVE) on 12 highway and city street scenarios with varying traffic density and RSU placements show that B-AWARE results in a 1.05x improvement of the potential datarate in the average case and 1.28x in the best case vs. the state of the art. But more impressively, B-AWARE reduces the time spent with no connection by 48% in the average case and 251% in the best case as compared to the state-of-the-art methods. This is partly a result of B-AWARE reducing almost 100% of blockage occurrences in simulation.
Date Created
2023
Agent

Immersive Interactions for JMARS XR

Description

Java Mission-planning and Analysis for Remote Sensing (JMARS) is a geospatial software that provides mission planning and data-analysis tools with access to orbital data for planetary bodies like Mars and Venus. Using JMARS, terrain scenes can be prepared with an

Java Mission-planning and Analysis for Remote Sensing (JMARS) is a geospatial software that provides mission planning and data-analysis tools with access to orbital data for planetary bodies like Mars and Venus. Using JMARS, terrain scenes can be prepared with an assortment of data layers along with any additional data sets. These scenes can then be exported into the JMARS extended reality platform, which includes both augmented reality and virtual reality experiences. JMARS VR Viewer is a virtual reality experience that allows users to view three-dimensional terrain data in a fully immersive and interactive way. This tool also provides a collaborative environment for users to host a terrain scene where people can analyze the data together. The purpose of the project is to design a set of interactions in virtual reality to try and address these questions: (1) how do we make sense of larger complex geospatial datasets, (2) how can we design interactions that assist users in understanding layered data in both an individual and collaborative work environment, and (3) what are the effects on the user’s cognitive overload while using these interfaces.

Date Created
2023-05
Agent

Time Sensitive Networking in Multimedia and Industrial Control Applications

168845-Thumbnail Image.png
Description
Ethernet based technologies are emerging as the ubiquitous de facto form of communication due to their interoperability, capacity, cost, and reliability. Traditional Ethernet is designed with the goal of delivering best effort services. However, several real time and control applications

Ethernet based technologies are emerging as the ubiquitous de facto form of communication due to their interoperability, capacity, cost, and reliability. Traditional Ethernet is designed with the goal of delivering best effort services. However, several real time and control applications require more precise deterministic requirements and Ultra Low Latency (ULL), that Ethernet cannot be used for. Current Industrial Automation and Control Systems (IACS) applications use semi-proprietary technologies that provide deterministic communication behavior for sporadic and periodic traffic, but can lead to closed systems that do not interoperate effectively. The convergence between the informational and operational technologies in modern industrial control networks cannot be achieved using traditional Ethernet. Time Sensitive Networking (TSN) is a suite of IEEE standards designed by augmenting traditional Ethernet with real time deterministic properties ideal for Digital Signal Processing (DSP) applications. Similarly, Deterministic Networking (DetNet) is a Internet Engineering Task Force (IETF) standardization that enhances the network layer with the required deterministic properties needed for IACS applications. This dissertation provides an in-depth survey and literature review on both standards/research and 5G related material on ULL. Recognizing the limitations of several features of the standards, this dissertation provides an empirical evaluation of these approaches and presents novel enhancements to the shapers and schedulers involved in TSN. More specifically, this dissertation investigates Time Aware Shaper (TAS), Asynchronous Traffic Shaper (ATS), and Cyclic Queuing and Forwarding (CQF) schedulers. Moreover, the IEEE 802.1Qcc, centralized management and control, and the IEEE 802.1Qbv can be used to manage and control scheduled traffic streams with periodic properties along with best-effort traffic on the same network infrastructure. Both the centralized network/distributed user model (hybrid model) and the fully-distributed (decentralized) IEEE 802.1Qcc model are examined on a typical industrial control network with the goal of maximizing scheduled traffic streams. Finally, since industrial applications and cyber-physical systems require timely delivery, any channel or node faults can cause severe disruption to the operational continuity of the application. Therefore, the IEEE 802.1CB, Frame Replication and Elimination for Reliability (FRER), is examined and tested using machine learning models to predict faulty scenarios and issue remedies seamlessly.
Date Created
2022
Agent

Fault-tolerance in Time Sensitive Network with Machine Learning Model

168650-Thumbnail Image.png
Description
Nowadays, demand from the Internet of Things (IoT), automotive networking, and video applications is driving the transformation of Ethernet. It is a shift towards time-sensitive Ethernet. As a large amount of data is transmitted, many errors occur in the network.

Nowadays, demand from the Internet of Things (IoT), automotive networking, and video applications is driving the transformation of Ethernet. It is a shift towards time-sensitive Ethernet. As a large amount of data is transmitted, many errors occur in the network. For this increased traffic, a Time Sensitive Network (TSN) is important. Time-Sensitive Network (TSN) is a technology that provides a definitive service for time sensitive traffic in an Ethernet environment that provides time-synchronization. In order to efficiently manage these errors, countermeasures against errors are required. A system that maintains its function even in the event of an internal fault or failure is called a Fault-Tolerant system. For this, after configuring the network environment using the OMNET++ program, machine learning was used to estimate the optimal alternative routing path in case an error occurred in transmission. By setting an alternate path before an error occurs, I propose a method to minimize delay and minimize data loss when an error occurs. Various methods were compared. First, when no replication environment and secondly when ideal replication, thirdly random replication, and lastly replication using ML were tested. In these experiments, replication in an ideal environment showed the best results, which is because everything is optimal. However, except for such an ideal environment, replication prediction using the suggested ML showed the best results. These results suggest that the proposed method is effective, but there may be problems with efficiency and error control, so an additional overview is provided for further improvement.
Date Created
2022
Agent

Towards Fine-Grained Control of Visual Data in Mobile Systems

168629-Thumbnail Image.png
Description
With the rapid development of both hardware and software, mobile devices with their advantages in mobility, interactivity, and privacy have enabled various applications, including social networking, mixed reality, entertainment, authentication, and etc.In diverse forms such as smartphones, glasses, and watches,

With the rapid development of both hardware and software, mobile devices with their advantages in mobility, interactivity, and privacy have enabled various applications, including social networking, mixed reality, entertainment, authentication, and etc.In diverse forms such as smartphones, glasses, and watches, the number of mobile devices is expected to increase by 1 billion per year in the future. These devices not only generate and exchange small data such as GPS data, but also large data including videos and point clouds. Such massive visual data presents many challenges for processing on mobile devices. First, continuously capturing and processing high resolution visual data is energy-intensive, which can drain the battery of a mobile device very quickly. Second, data offloading for edge or cloud computing is helpful, but users are afraid that their privacy can be exposed to malicious developers. Third, interactivity and user experience is degraded if mobile devices cannot process large scale visual data in real-time such as off-device high precision point clouds. To deal with these challenges, this work presents three solutions towards fine-grained control of visual data in mobile systems, revolving around two core ideas, enabling resolution-based tradeoffs and adopting split-process to protect visual data.In particular, this work introduces: (1) Banner media framework to remove resolution reconfiguration latency in the operating system for enabling seamless dynamic resolution-based tradeoffs; (2) LesnCap split-process application development framework to protect user's visual privacy against malicious data collection in cloud-based Augmented Reality (AR) applications by isolating the visual processing in a distinct process; (3) A novel voxel grid schema to enable adaptive sampling at the edge device that can sample point clouds flexibly for interactive 3D vision use cases across mobile devices and mobile networks. The evaluation in several mobile environments demonstrates that, by controlling visual data at a fine granularity, energy efficiency can be improved by 49% switching between resolutions, visual privacy can be protected through split-process with negligible overhead, and point clouds can be delivered at a high throughput meeting various requirements.Thus, this work can enable more continuous mobile vision applications for the future of a new reality.
Date Created
2022
Agent