Immunological Characterization of Plant-Based HIV-1 Gag/Dgp41 Virus-Like Particles

130343-Thumbnail Image.png
Description
It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies

It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR—a fusion of MPER and the B-subunit of cholera toxin) were investigated in BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were elicited when systemically primed with VLPs. These responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenicity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.
Date Created
2016-03-17
Agent

Biological and immunological characterization of plant-produced HIV-1 Gag/dgp41 virus-like particles

150394-Thumbnail Image.png
Description
Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against

Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising results. Recent successes have focused on highly conserved, mucosally-targeted antigens within HIV-1 such as the membrane proximal external region (MPER) of the envelope protein, gp41. MPER has been shown to play critical roles in the viral mucosal transmission, though this peptide is not immunogenic on its own. Gag is a structural protein configuring the enveloped virus particles, and has been suggested to constitute a target of the cellular immunity potentially controlling the viral load. It was hypothesized that HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (dgp41) could be expressed in plants. Plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a tobacco mosaic virus-based expression system or a combination of both. Results of biophysical, biochemical and electron microscopy characterization demonstrated that plant cells could support not only the formation of HIV-1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These particles were purified and utilized in mice immunization experiments. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR - a fusion of MPER and the B-subunit of cholera toxin) were administered to BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens could be elicited in mice systemically primed with VLPs and these responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a robust boosting response against Gag and gp41 when boosted with either candidate. Functional assays of these antibodies are in progress to test the antibodies' effectiveness in neutralizing and preventing mucosal transmission of HIV-1. This immunogenicity of plant-based Gag/dgp41 VLPs represents an important milestone on the road towards a broadly-efficacious and inexpensive subunit vaccine against HIV-1.
Date Created
2011
Agent