On Memory and Physiological Signals of Experts and Novices-Case Study: Chess

134430-Thumbnail Image.png
Description
Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how

Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how expert chess players use their memory and skills to approach a new chessboard con�guration. Studies have shown that chess skill is based on memory, speci�cally, "chunks" of chess piece positions that have been previously encountered by players. However, debate exists concerning how these chunks are constructed in players' memory. These chunks could be constructed by proximity of pieces on the chessboard as well as their precise location or constructed through attack-defense relations. The primary objective of this study is to support which one is more in line with chess players' actual chess abilities based off their memory, proximity or attack/defense. This study replicates and extends an experiment conducted by McGregor and Howe (2002), which explored the argument that pieces are primed more by attack and defense relations than by proximity. Like their study, the present study examined novice and expert chess players' response times for correct and error responses by showing slides of game configurations. In addition to these metrics, the present study also incorporated an eye-tracker to measure visual attention and EEG to measure affective and cognitive states. They were added to allow the comparison of subtle and unconscious behaviors of both novices and expert chess players. Overall, most McGregor and Howe's (2002) results were replicated supporting their theory on chess expertise. This included statistically significance for skill in the error rates with the mean error rates on the piece recognition tests were 70.1% for novices and 87.9% for experts, as well as significance for the two-way interaction for relatedness and proximity with error rates of 22.4% for unrelated/far, 18.8% for related/far, 15.8% for unrelated
ear, and 29.3% for related
ear. Unfortunately, there were no statistically significance for any of the response time effects, which McGregor and Howe found for the interaction between skill and proximity. Despite eye-tracking and EEG data not either support nor confirm McGregor and Howe's theory on how chess players memorize chessboard configurations, these metrics did help build a secondary theory on how novices typically rely on proximity to approach chess and new visual problems in general. This was exemplified by the statistically significant results for short-term excitement for the two-way interaction of skill and proximity, where the largest short-term excitement score was between novices on near proximity slides. This may indicate that novices, because they may lean toward using proximity to try to recall these pieces, experience a short burst of excitement when the pieces are close to each other because they are more likely to recall these configurations.
Date Created
2017-05
Agent

Leye (Lie) Detector \u2014 A Study of Lie Detection using Eye Tracking, Facial Gestures, and EEG

134293-Thumbnail Image.png
Description
Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to

Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to that scope. However, lie detection has been criticized for being subjective, unreliable, inaccurate, and susceptible to deliberate manipulation. Furthermore, critics also believe that the administrator of the test also influences the outcome as well. As a result, the polygraph machine, the contemporary device used for lie detection, has come under scrutiny when used as evidence in the courts. The purpose of this study is to use three entirely different tools and concepts to determine whether eye tracking systems, electroencephalogram (EEG), and Facial Expression Emotion Analysis (FACET) are reliable tools for lie detection. This study found that certain constructs such as where the left eye is looking at in regard to its usual position and engagement levels in eye tracking and EEG respectively could distinguish between truths and lies. However, the FACET proved the most reliable tool out of the three by providing not just one distinguishing variable but seven, all related to emotions derived from movements in the facial muscles during the present study. The emotions associated with the FACET that were documented to possess the ability to distinguish between truthful and lying responses were joy, anger, fear, confusion, and frustration. In addition, an overall measure of the subject's neutral and positive emotional expression were found to be distinctive factors. The implications of this study and future directions are discussed.
Date Created
2017-05
Agent

Players' Personalities and their Motivation to Immerse themselves in PVP Games

134292-Thumbnail Image.png
Description
Millions of people every day log onto their computers to play competitive games with others around the world. Each of these players has their own unique personality and their own reasons for playing. To explore the relationship between player personalities

Millions of people every day log onto their computers to play competitive games with others around the world. Each of these players has their own unique personality and their own reasons for playing. To explore the relationship between player personalities and gameplay, this study asked participants to report their Myers-Briggs sixteen personality types and complete a survey that asked them questions about their behavior while games playing competitively online including their preferred in-game archetype and questions about how they interact with other players online. The survey also included the Grit Scale test, which which was intended to explore players' perseverance. Nearly 700 people participated in the study and all responses were analyzed based on their Myers-Briggs' personality type. While this study revealed that Myers-Briggs' personality type alone cannot determine a player's mindset while playing online, it was found to be an indicator of how they feel about socializing with others online. The implications of these results are discussed in this paper.
Date Created
2017-05
Agent

Enhancing Object Detection In An Augmented Reality Learning System

136586-Thumbnail Image.png
Description
The goal of the ANLGE Lab's AR assembly project is to create/save assemblies as well as to replicate assemblies later with real-time AR feedback. In this iteration of the project, the SURF algorithm was used to provide object detection for

The goal of the ANLGE Lab's AR assembly project is to create/save assemblies as well as to replicate assemblies later with real-time AR feedback. In this iteration of the project, the SURF algorithm was used to provide object detection for 5 featureful objects (a Lego girl piece, a Lego guy piece, a blue Lego car piece, a window piece, and a fence piece). Functionality was added to determine the location of these 5 featureful objects within a frame as well by using the SURF keypoints associated with detection. Finally, the feedback mechanism by which the system detects connections between objects was improved to consider the size of the blocks in determining connections rather than using static values. Additional user features such as adding a new object and using voice commands were also implemented to make the system more user friendly.
Date Created
2015-05
Agent

Integrating music and studying: The relationships between music, affect, and academic achievement

136540-Thumbnail Image.png
Description
Since the early 1990's, researchers have been looking at intersections between education and music. After a highly popular study correlating listening to Mozart to temporary increases in spatial reasoning, many other researchers tried to find a link between different musical

Since the early 1990's, researchers have been looking at intersections between education and music. After a highly popular study correlating listening to Mozart to temporary increases in spatial reasoning, many other researchers tried to find a link between different musical genres and learning outcomes. Using three musical treatments (Pop, classical, silence), this study had subjects (N=34) complete a reading-based task whereupon they were tested on their comprehension. Using a suite of sensors, data was collected to analyze the participants' emotions and affect while they read from an educational psychology textbook. The present study has two major focuses: They detail whether (1) changes in musical condition affect learning outcomes and (2) whether changes in musical condition affect emotional outcomes. The popular conception that listening to classical music makes you smarter was proven false long ago, but there may actually be some merit to using music to assist one in studying. While there were no significant changes in test scores depending on musical condition; frustration levels were significantly lower for those who listened to classical instead of pop music.
Date Created
2015-05
Agent

Reliance Dashboard: An Automated Real Estate Data Analysis Dashboard

136334-Thumbnail Image.png
Description
Investment real estate is unique among similar financial instruments by nature of each property's internal complexities and interaction with the external economy. Where a majority of tradable assets are static goods within a dynamic market, real estate investments are dynamic

Investment real estate is unique among similar financial instruments by nature of each property's internal complexities and interaction with the external economy. Where a majority of tradable assets are static goods within a dynamic market, real estate investments are dynamic goods within a dynamic market. Furthermore, investment real estate, particularly commercial properties, not only interacts with the surrounding economy, it reflects it. Alive with tenancy, each and every commercial investment property provides a microeconomic view of businesses that make up the local economy. Management of commercial investment real estate captures this economic snapshot in a unique abundance of untapped statistical data. While analysis of such data is undeniably valuable, the efforts involved with this process are time consuming. Given this unutilized potential our team has develop proprietary software to analyze this data and communicate the results automatically though and easy to use interface. We have worked with a local real estate property management and ownership firm, Reliance Management, to develop this system through the use of their current, historical, and future data. Our team has also built a relationship with the executives of Reliance Management to review functionality and pertinence of the system we have dubbed, Reliance Dashboard.
Date Created
2015-05
Agent

Facilitating human-robot collaboration using a mixed-reality projection system

155844-Thumbnail Image.png
Description
Human-Robot collaboration can be a challenging exercise especially when both the human and the robot want to work simultaneously on a given task. It becomes difficult for the human to understand the intentions of the robot and vice-versa. To overcome

Human-Robot collaboration can be a challenging exercise especially when both the human and the robot want to work simultaneously on a given task. It becomes difficult for the human to understand the intentions of the robot and vice-versa. To overcome this problem, a novel approach using the concept of Mixed-Reality has been proposed, which uses the surrounding space as the canvas to augment projected information on and around 3D objects. A vision based tracking algorithm precisely detects the pose and state of the 3D objects, and human-skeleton tracking is performed to create a system that is both human-aware as well as context-aware. Additionally, the system can warn humans about the intentions of the robot, thereby creating a safer environment to work in. An easy-to-use and universal visual language has been created which could form the basis for interaction in various human-robot collaborations in manufacturing industries.

An objective and subjective user study was conducted to test the hypothesis, that using this system to execute a human-robot collaborative task would result in higher performance as compared to using other traditional methods like printed instructions and through mobile devices. Multiple measuring tools were devised to analyze the data which finally led to the conclusion that the proposed mixed-reality projection system does improve the human-robot team's efficiency and effectiveness and hence, will be a better alternative in the future.
Date Created
2017
Agent

Real Time Cross Platform Collaboration Between Virtual Reality & Mixed Reality

Description
Virtual Reality (hereafter VR) and Mixed Reality (hereafter MR) have opened a new line of applications and possibilities. Amidst a vast network of potential applications, little research has been done to provide real time collaboration capability between users of VR

Virtual Reality (hereafter VR) and Mixed Reality (hereafter MR) have opened a new line of applications and possibilities. Amidst a vast network of potential applications, little research has been done to provide real time collaboration capability between users of VR and MR. The idea of this thesis study is to develop and test a real time collaboration system between VR and MR. The system works similar to a Google document where two or more users can see what others are doing i.e. writing, modifying, viewing, etc. Similarly, the system developed during this study will enable users in VR and MR to collaborate in real time.

The study of developing a real-time cross-platform collaboration system between VR and MR takes into consideration a scenario in which multiple device users are connected to a multiplayer network where they are guided to perform various tasks concurrently.

Usability testing was conducted to evaluate participant perceptions of the system. Users were required to assemble a chair in alternating turns; thereafter users were required to fill a survey and give an audio interview. Results collected from the participants showed positive feedback towards using VR and MR for collaboration. However, there are several limitations with the current generation of devices that hinder mass adoption. Devices with better performance factors will lead to wider adoption.
Date Created
2017
Agent

Information Technology and Human Factors to Enhance Design and Constructability Review Processes in Construction

155429-Thumbnail Image.png
Description
Emerging information and communication technology (ICT) has had an enormous effect on the building architecture, engineering, construction and operation (AECO) fields in recent decades. The effects have resonated in several disciplines, such as project information flow, design representation and communication,

Emerging information and communication technology (ICT) has had an enormous effect on the building architecture, engineering, construction and operation (AECO) fields in recent decades. The effects have resonated in several disciplines, such as project information flow, design representation and communication, and Building Information Modeling (BIM) approaches. However, these effects can potentially impact communication and coordination of the virtual design contents in both design and construction phases. Therefore, and with the great potential for emerging technologies in construction projects, it is essential to understand how these technologies influence virtual design information within the organizations as well as individuals’ behaviors. This research focusses on understanding current emerging technologies and its impacts on projects virtual design information and communication among projects stakeholders within the AECO organizations.
Date Created
2017
Agent

Affect-driven self-adaptation: a manufacturing vision with a software product line paradigm

155200-Thumbnail Image.png
Description
Affect signals what humans care about and is involved in rational decision-making and action selection. Many technologies may be improved by the capability to recognize human affect and to respond adaptively by appropriately modifying their operation. This capability, named affect-driven

Affect signals what humans care about and is involved in rational decision-making and action selection. Many technologies may be improved by the capability to recognize human affect and to respond adaptively by appropriately modifying their operation. This capability, named affect-driven self-adaptation, benefits systems as diverse as learning environments, healthcare applications, and video games, and indeed has the potential to improve systems that interact intimately with users across all sectors of society. The main challenge is that existing approaches to advancing affect-driven self-adaptive systems typically limit their applicability by supporting the creation of one-of-a-kind systems with hard-wired affect recognition and self-adaptation capabilities, which are brittle, costly to change, and difficult to reuse. A solution to this limitation is to leverage the development of affect-driven self-adaptive systems with a manufacturing vision.

This dissertation demonstrates how using a software product line paradigm can jumpstart the development of affect-driven self-adaptive systems with that manufacturing vision. Applying a software product line approach to the affect-driven self-adaptive domain provides a comprehensive, flexible and reusable infrastructure of components with mechanisms to monitor a user’s affect and his/her contextual interaction with a system, to detect opportunities for improvements, to select a course of action, and to effect changes. It also provides a domain-specific architecture and well-documented process guidelines, which facilitate an understanding of the organization of affect-driven self-adaptive systems and their implementation by systematically customizing the infrastructure to effectively address the particular requirements of specific systems.

The software product line approach is evaluated by applying it in the development of learning environments and video games that demonstrate the significant potential of the solution, across diverse development scenarios and applications.

The key contributions of this work include extending self-adaptive system modeling, implementing a reusable infrastructure, and leveraging the use of patterns to exploit the commonalities between systems in the affect-driven self-adaptation domain.
Date Created
2016
Agent