Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically…
Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Optimal foraging theory provides a suite of tools that model the best way that an animal will <br/>structure its searching and processing decisions in uncertain environments. It has been <br/>successful characterizing real patterns of animal decision making, thereby providing insights<br/>into…
Optimal foraging theory provides a suite of tools that model the best way that an animal will <br/>structure its searching and processing decisions in uncertain environments. It has been <br/>successful characterizing real patterns of animal decision making, thereby providing insights<br/>into why animals behave the way they do. However, it does not speak to how animals make<br/>decisions that tend to be adaptive. Using simulation studies, prior work has shown empirically<br/>that a simple decision-making heuristic tends to produce prey-choice behaviors that, on <br/>average, match the predicted behaviors of optimal foraging theory. That heuristic chooses<br/>to spend time processing an encountered prey item if that prey item's marginal rate of<br/>caloric gain (in calories per unit of processing time) is greater than the forager's<br/>current long-term rate of accumulated caloric gain (in calories per unit of total searching<br/>and processing time). Although this heuristic may seem intuitive, a rigorous mathematical<br/>argument for why it tends to produce the theorized optimal foraging theory behavior has<br/>not been developed. In this thesis, an analytical argument is given for why this<br/>simple decision-making heuristic is expected to realize the optimal performance<br/>predicted by optimal foraging theory. This theoretical guarantee not only provides support<br/>for why such a heuristic might be favored by natural selection, but it also provides<br/>support for why such a heuristic might a reliable tool for decision-making in autonomous<br/>engineered agents moving through theatres of uncertain rewards. Ultimately, this simple<br/>decision-making heuristic may provide a recipe for reinforcement learning in small robots<br/>with little computational capabilities.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A complex social system, whether artificial or natural, can possess its macroscopic properties as a collective, which may change in real time as a result of local behavioral interactions among a number of agents in it. If a reliable indicator…
A complex social system, whether artificial or natural, can possess its macroscopic properties as a collective, which may change in real time as a result of local behavioral interactions among a number of agents in it. If a reliable indicator is available to abstract the macrolevel states, decision makers could use it to take a proactive action, whenever needed, in order for the entire system to avoid unacceptable states or con-verge to desired ones. In realistic scenarios, however, there can be many challenges in learning a model of dynamic global states from interactions of agents, such as 1) high complexity of the system itself, 2) absence of holistic perception, 3) variability of group size, 4) biased observations on state space, and 5) identification of salient behavioral cues. In this dissertation, I introduce useful applications of macrostate estimation in complex multi-agent systems and explore effective deep learning frameworks to ad-dress the inherited challenges. First of all, Remote Teammate Localization (ReTLo)is developed in multi-robot teams, in which an individual robot can use its local interactions with a nearby robot as an information channel to estimate the holistic view of the group. Within the problem, I will show (a) learning a model of a modular team can generalize to all others to gain the global awareness of the team of variable sizes, and (b) active interactions are necessary to diversify training data and speed up the overall learning process. The complexity of the next focal system escalates to a colony of over 50 individual ants undergoing 18-day social stabilization since a chaotic event. I will utilize this natural platform to demonstrate, in contrast to (b), (c)monotonic samples only from “before chaos” can be sufficient to model the panicked society, and (d) the model can also be used to discover salient behaviors to precisely predict macrostates.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The desert ant, Novomessor albisetosus, is an ideal model system for studying collective transport in ants and self-organized cooperation in natural systems. Small teams collect and stabilize around objects encountered by these colonies in the field, and the teams carry…
The desert ant, Novomessor albisetosus, is an ideal model system for studying collective transport in ants and self-organized cooperation in natural systems. Small teams collect and stabilize around objects encountered by these colonies in the field, and the teams carry them in straight paths at a regulated velocity back to nearby nest entrances. The puzzling finding that teams are slower than individuals contrasts other cases of cooperative transport in ants. The statistical distribution of speeds has been found to be consistent with the slowest-ant model, but the key assumption that individual ants consistently vary in speed has not been tested. To test this, information is needed about the natural distribution of individual ant speeds in colonies and whether some ants are intrinsically slow or fast. To investigate the natural, individual-level variation in ants carrying loads, data were collected on single workers carrying fig seeds in arenas separated from other workers. Using three separate, small arenas, the instantaneous speed of each seed-laden worker was recorded when she picked up a fig seed and transported within the arena. Instantaneous speeds were measured by dividing the distance traveled in each frame by how much time had passed. There were nine ants who transported a fig seed numerous times and there was a clear variation in their average instantaneous speed. Within an ant, slightly varying speeds were found as well, but within-ant speeds were not as varied as speed across ants. These results support the conclusion that there is intrinsic variation in the speed of an individual which supports the slowest-ant model, but this may require further experimentation to test thoroughly. This information aids in the understanding of the natural variation of ants cooperatively carrying larger loads in groups.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In certain ant species, groups of ants work together to transport food and materials back to their nests. In some cases, the group exhibits a leader-follower behavior in which a single ant guides the entire group based on its knowledge…
In certain ant species, groups of ants work together to transport food and materials back to their nests. In some cases, the group exhibits a leader-follower behavior in which a single ant guides the entire group based on its knowledge of the destination. In some cases, the leader role is occupied temporarily by an ant, only to be replaced when an ant with new information arrives. This kind of behavior can be very useful in uncertain environments where robot teams work together to transport a heavy or bulky payload. The purpose of this research was to study ways to implement this behavior on robot teams.
In this work, I combined existing dynamical models of collective transport in ants to create a stochastic model that describes these behaviors and can be used to control multi-robot systems to perform collective transport. In this model, each agent transitions stochastically between roles based on the force that it senses the other agents are applying to the load. The agent’s motion is governed by a proportional controller that updates its applied force based on the load velocity. I developed agent-based simulations of this model in NetLogo and explored leader-follower scenarios in which agents receive information about the transport destination by a newly informed agent (leader) joining the team. From these simulations, I derived the mean allocations of agents between “puller” and “lifter” roles and the mean forces applied by the agents throughout the motion.
From the simulation results obtained, we show that the mean ratio of lifter to puller populations is approximately 1:1. We also show that agents using the role update procedure based on forces are required to exert less force than agents that select their role based on their position on the load, although both strategies achieve similar transport speeds.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Woodland/Alloy Casting, Inc. is an aluminum foundry known for providing high-quality molds to their customers in industries such as aviation, electrical, defense, and nuclear power. However, as the company has grown larger during the past three years, they have begun…
Woodland/Alloy Casting, Inc. is an aluminum foundry known for providing high-quality molds to their customers in industries such as aviation, electrical, defense, and nuclear power. However, as the company has grown larger during the past three years, they have begun to struggle with the on-time delivery of their orders. Woodland prides itself on their high-grade process that includes core processing, the molding process, cleaning process, and heat-treat process. To create each mold, it has to flow through each part of the system flawlessly. Throughout this process, significant bottlenecks occur that limit the number of molds leaving the system. To combat this issue, this project uses a simulation of the foundry to test how best to schedule their work to optimize the use of their resources. Simulation can be an effective tool when testing for improvements in systems where making changes to the physical system is too expensive. ARENA is a simulation tool that allows for manipulation of resources and process while also allowing both random and selected schedules to be run through the foundry’s production process. By using an ARENA simulation to test different scheduling techniques, the risk of missing production runs is minimized during the experimental period so that many different options can be tested to see how they will affect the production line. In this project, several feasible scheduling techniques are compared in simulation to determine which schedules allow for the highest number of molds to be completed.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Simulation games are widely used in engineering education, especially for industrial engineering and operations management. A well-made simulation game aids in achieving learning objectives for students and minimal additional teaching by an instructor. Many simulation games exist for engineering education,…
Simulation games are widely used in engineering education, especially for industrial engineering and operations management. A well-made simulation game aids in achieving learning objectives for students and minimal additional teaching by an instructor. Many simulation games exist for engineering education, but newer technologies now exist that improve the overall experience of developing and using these games. Although current solutions teach concepts adequately, poorly-maintained platforms distract from the key learning objectives, detracting from the value of the activities. A backend framework was created to facilitate an educational, competitive, participatory simulation of a manufacturing system that is intended to be easy to maintain, deploy, and expand.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Modern, advanced statistical tools from data mining and machine learning have become commonplace in molecular biology in large part because of the “big data” demands of various kinds of “-omics” (e.g., genomics, transcriptomics, metabolomics, etc.). However, in other fields…
Modern, advanced statistical tools from data mining and machine learning have become commonplace in molecular biology in large part because of the “big data” demands of various kinds of “-omics” (e.g., genomics, transcriptomics, metabolomics, etc.). However, in other fields of biology where empirical data sets are conventionally smaller, more traditional statistical methods of inference are still very effective and widely used. Nevertheless, with the decrease in cost of high-performance computing, these fields are starting to employ simulation models to generate insights into questions that have been elusive in the laboratory and field. Although these computational models allow for exquisite control over large numbers of parameters, they also generate data at a qualitatively different scale than most experts in these fields are accustomed to. Thus, more sophisticated methods from big-data statistics have an opportunity to better facilitate the often-forgotten area of bioinformatics that might be called “in-silicomics”.
As a case study, this thesis develops methods for the analysis of large amounts of data generated from a simulated ecosystem designed to understand how mammalian biomechanics interact with environmental complexity to modulate the outcomes of predator–prey interactions. These simulations investigate how other biomechanical parameters relating to the agility of animals in predator–prey pairs are better predictors of pursuit outcomes. Traditional modelling techniques such as forward, backward, and stepwise variable selection are initially used to study these data, but the number of parameters and potentially relevant interaction effects render these methods impractical. Consequently, new modelling techniques such as LASSO regularization are used and compared to the traditional techniques in terms of accuracy and computational complexity. Finally, the splitting rules and instances in the leaves of classification trees provide the basis for future simulation with an economical number of additional runs. In general, this thesis shows the increased utility of these sophisticated statistical techniques with simulated ecological data compared to the approaches traditionally used in these fields. These techniques combined with methods from industrial Design of Experiments will help ecologists extract novel insights from simulations that combine habitat complexity, population structure, and biomechanics.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow…
Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow their program by training and retaining new players. The purpose of this project was to create a prototype statistical tool that maximizes a player line-up's probability of scoring the next point, while having as equal playing time across all experienced and novice players as possible. Game, player, and team data was collected for 25 different games played over the course of 4 tournaments during Fall 2017 and early Spring 2018 using the UltiAnalytics iPad application. "Amount of Top 1/3 Players" was the measure of equal playing time, and "Line Efficiency" and "Line Interaction" represented a line's probability of scoring. After running a logistic regression, Line Efficiency was found to be the more accurate predictor of scoring outcome than Line Interaction. An "Equal PT Measure vs. Line Efficiency" graph was then created and the plot showed what the optimal lines were depending on what the user's preferences were at that point in time. Possible next steps include testing the model and refining it as needed.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Commuting is a significant cost in time and in travel expenses for working individuals and a major contributor to emissions in the United States. This project focuses on increasing the efficiency of an intersection through the use of "light metering."…
Commuting is a significant cost in time and in travel expenses for working individuals and a major contributor to emissions in the United States. This project focuses on increasing the efficiency of an intersection through the use of "light metering." Light metering involves a series of lights leading up to an intersection forcing cars to stop further away from the final intersection in smaller queues instead of congregating in a large queue before the final intersection. The simulation software package AnyLogic was used to model a simple two-lane intersection with and without light metering. It was found that light metering almost eliminates start-up delay by preventing a long queue to form in front of the modeled intersection. Shorter queue lengths and reduction in the start-up delays prevents cycle failure and significantly reduces the overall delay for the intersection. However, frequent deceleration and acceleration for a few of the cars occurs before each light meter. This solution significantly reduces the traffic density before the intersection and the overall delay but does not appear to be a better emission alternative due to an increase in acceleration. Further research would need to quantify the difference in emissions for this model compared to a standard intersection.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)