Transition Metal Catalyzed Depolymerization of Polyethylene Terephthalate and Synthesis of a Novel Redox-Active Ligand

Description

Post-consumer plastic and polymer waste accumulation in recent years continues to become more of a problem. One of the common polymers that has become ubiquitous to modern life is polyethylene terephthalate, a polymer that makes up 6.2% of all polymers

Post-consumer plastic and polymer waste accumulation in recent years continues to become more of a problem. One of the common polymers that has become ubiquitous to modern life is polyethylene terephthalate, a polymer that makes up 6.2% of all polymers produced and only 39% of which is recycled in the US annually.1,5 In this study a new catalyst was for the methanolysis of PET and compared to a common organic base, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), that has been used in academia and industry for the depolymerization of PET. In this study it was concluded that yttrium (III) acetylacetonate hydrate was a more active catalyst for the methanolysis of PET at 120 °C in comparison to TBD. It was also determined that there is no co-catalytic effect between yttrium (III) acetylacetonate hydrate and TBD when used in combination. The use of manganese (II) acetate tetrahydrate was also explored as a potential catalyst and was found to shown significant reactivity. However, it was concluded that the optimal conditions for PET methanolysis had not been reached and that further research into reaction times as well as co-solvents needs to be conducted. The synthesis of a novel o-phenylenediamine ligand functionalized with a labile phosphine substituent was also explored with the end goal of metalation and implementation in the methanolysis of PET. It has been assumed through nuclear magnetic resonance spectroscopy (NMR) characterization that the N,N’-(1,2-phenylenediamine)bis[3-(diphenylphosphanyl)-propanamide]-borane precursor was successfully synthesized and isolated. The subsequent deprotection of the N,N’-(1,2-phenylenediamine)bis[3-(diphenylphosphanyl)-propanamide]-borane complex was performed but has not been fully characterized. The 31P NMR does indicate a fully deprotected tertiary organophosphine. Through this work a detailed procedure for the ligand precursor has been laid out and developed so that the synthesis may now be scaled up, further characterized, metalated, and used to support catalysis.

Date Created
2023-05
Agent

Development of Homogeneous Manganese Catalysts for Organic Transformations and Inorganic Polymerizations

171487-Thumbnail Image.png
Description
The development of sustainable catalysts that exhibit exceptional activity has become a major goal of organometallic chemists. Considering their low cost and environmentally benign nature, the use of base metals in catalysis has recently been explored. This dissertation is focused

The development of sustainable catalysts that exhibit exceptional activity has become a major goal of organometallic chemists. Considering their low cost and environmentally benign nature, the use of base metals in catalysis has recently been explored. This dissertation is focused on the development of manganese catalysts for organic transformations and inorganic polymerizations. Previous advances in Mn-based hydrosilylation and hydroboration catalysis are reviewed in Chapter 1 and set the stage for the experimental work described herein.In Chapter 2, the electronic structure of [(2,6-iPr2PhBDI)Mn(μ-H)]2 is explored. This compound was evaluated by density functional theory calculations, SQUID magnetometry and EPR spectroscopy at low temperature. Single crystal X-ray diffraction data was collected for related compounds that feature bridging X-type ligands. The data revealed how bridging ligands impact the Mayer bond order between the two Mn atoms and explained why [(2,6-iPr2PhBDI)Mn(μ-H)]2 is an active catalyst for organic transformations. Chapter 3 spotlights the first study to systematically demonstrate commercial aminosilane CVD precursor synthesis by way of SiH4 and amine dehydrocoupling using [(2,6-iPr2PhBDI)Mn(μ-H)]2. In addition, the study provided an efficient and halogen-free preparation of highly cross-linked polycarbosilazanes under ambient conditions. Furthermore, exceptionally pure perhydropolysilazane was directly prepared from ammonia and silane at room temperature through dehydrogenative coupling. These are also the first reported examples of Mn-catalyzed Si–N dehydrocoupling. This research was then extended to the Mn-catalyzed dehydrogenative coupling of NH3 and diamines to organic silanes. Organic polysilazanes and polycarbosilazanes were synthesized and the structures were characterized by NMR, FT-IR, and MALDI-TOF spectroscopy. The thermal properties and coating applications of the products were evaluated by TGA, DSC, X-ray powder diffraction, SEM and EDX. A turnover frequency (TOF) experiment using 0.01 mol% of [(2,6-iPr2PhBDI)Mn(μ-H)]2 revealed a maximum TOF of 300 s-1, which is the highest activity ever reported for this transformation. The last chapter highlights the first examples of nitrile dihydroboration mediated by a manganese catalyst. Using 0.5 mol% of [(2,6-iPr2PhBDI)Mn(μ-H)]2, 14 nitriles were reduced with HBPin at 80 ℃ to afford N,N-diborylamines after 24 h. A mechanism was proposed based on the isolation of [(2,6-iPr2PhBDI)Mn(NCHPh)]2 as an intermediate and further substantiated by DFT.
Date Created
2022
Agent

New Syntheses of Low-Dimensional Metal Oxide Hybrids through Destructive Exfoliation

171457-Thumbnail Image.png
Description
Due to the potential synergistic properties from combining inorganic and organic moieties, inorganic/organic hybrids materials have recently attracted great attention. These hybrids are critical components in coating and nanocomposite additive technologies and have potential for future application in catalysis, energy

Due to the potential synergistic properties from combining inorganic and organic moieties, inorganic/organic hybrids materials have recently attracted great attention. These hybrids are critical components in coating and nanocomposite additive technologies and have potential for future application in catalysis, energy production or storage, environmental remediation, electronic, and sensing technologies. Most of these hybrids utilize low dimensional metal oxides as a key ingredient for the inorganic part. Generally, clay materials are used as inorganic components, however, the use of low dimensional transition metal oxides may provide additional properties not possible with clays. Despite their potential, few methods are known for the use of low dimensional transition metal oxides in the construction of inorganic/organic hybrid materials.Herein, new synthetic routes to produce hybrid materials from low dimensional early transition metal oxides are presented. Included in this thesis is a report on a destructive, chemical exfoliation method designed specifically to exploit the Brønsted acidity of hydrated early transition metal oxides. The method takes advantage of (1) the simple acid-base reaction principle applied to strong two-dimensional Brønsted solid acids and mildly basic, high-polarity organic solvents, (2) the electrostatic repulsion among exfoliated nanosheets, and (3) the high polarity of the organic solvent to stabilize the macroanionic metal oxide nanosheets in the solvent medium. This exfoliation route was applied to tungstite (WO3∙H2O) and vanadium phosphate hydrate (VOPO4∙H2O) to produce stable dispersions of metal oxide nanosheets. The nanosheets were then functionalized by adduct formation or silane surface modification. Both functionalization methods resulted in materials with unique properties, which demonstrates the versatility of the new exfoliation methods in preparing novel hybrid materials. Further extension of the method to aqueous systems allowed discovery of a new synthetic method for electrically-conducting polyaniline-polyoxometalate hybrid materials. Namely, destructive dissolution of MoO2(HPO4)(H2O) in water produces protons and Strandberg-type phosphomolybdate clusters, and in the presence of aniline and an oxidizing agent, the clusters self-assemble with protonated anilines and selectively form polyaniline-phosphomolybdate hybrids on various types of surfaces through in situ oxidative chemical polymerization. New conductive nanocomposite materials were produced by selectively coating the surface of silica nanoparticles.
Date Created
2022
Agent

Chemoenzymatic Synthesis and Functionalization of Heterocycles

Description

The development of novel aqueous cross-coupling strategies has emerged as a rapidly expanding area of research within organic synthesis. However, many of these cross-coupling reactions require the pre-formation of an organohalide substrate, which often involves toxic halogenating reagents and harsh

The development of novel aqueous cross-coupling strategies has emerged as a rapidly expanding area of research within organic synthesis. However, many of these cross-coupling reactions require the pre-formation of an organohalide substrate, which often involves toxic halogenating reagents and harsh reaction conditions. This work details the development of a tandem halogenation/cross-coupling procedure in which an electron-rich arene or heteroarene is brominated through an enzymatic halogenation reaction catalyzed by a vanadium dependent haloperoxidase (VHPO) and then used without workup in a subsequent aqueous Suzuki cross-coupling reaction. This sequential process allows the arylated product to be accessed in a single pot from the unfunctionalized substrate via the brominated intermediate. Optimization of the enzymatic halogenation step was performed for three different substrates, resulting in the discovery of conditions for the bromination of 2,3-dihydrobenzofuran, chromane, and anisole in high yield (>95%). The scope of the reaction was then investigated for a range of electron-rich arene and heteroarene substrates. Next, Suzuki cross-coupling conditions were developed in a reaction mixture of pH 5 citrate buffer and acetonitrile and applied to the arylation of 2,3-dihydrobenzofuran utilizing an array of arylboronic acid coupling partners. Finally, the two procedures were combined to perform a tandem enzymatic halogenation/aqueous Suzuki cross-coupling of 2,3-dihydrobenzofuran to give the arylated product in 74% yield.

Date Created
2022-12
Agent

Design and Isolation of a Novel Phosphine Functionalized Carbodiimide as a Versatile Precursor to Accessing Hemilabile Amidinate and Guanidinate Ligands

164829-Thumbnail Image.png
Description

Amidinates and guanidinates are promising supporting ligands in organometallic and coordination chemistry, highly valued for their accessibility, tunability, and comparability with other popular anionic N-chelating hard donor ligands like β-diketiminates. By far the most powerful way to access these ligands

Amidinates and guanidinates are promising supporting ligands in organometallic and coordination chemistry, highly valued for their accessibility, tunability, and comparability with other popular anionic N-chelating hard donor ligands like β-diketiminates. By far the most powerful way to access these ligands involves direct metal-nucleophile insertion into N,N’- substituted carbodiimides. However, the majority of reported examples require the use of commercially accessible carbodiimide peptide coupling reagents with simple alkyl substituents leading to low variation in potential substituents. Presented here is the design, synthesis, and isolation of a novel N,N’-bis[3-(diphenylphosphino)propyl]carbodiimide via an Aza-Wittig reaction between two previously described air stable substrates. At room temperature, 3-(diphenylphosphanyl-borane)-propylisocyanate was added to N-(3-(diphenylphospino)propyl)-triphenylphosphinimine, leading to product formation in minutes. One-pot phosphine-borane deprotection, followed by simple filtration of the crude mixture through a small, basic silica plug using pentane and diethyl ether granted the corresponding carbodiimide in high purity and yield (over 70%), confirmed by 1H, 13C, and 31P NMR spectroscopy. In addition to accessing different central carbon substituents, modification of phosphine substituents should be easily accessible through minor variations in the synthesis. With these precursors, anionic amidinates and guanidinates capable of κ4 -N,N,P,P-coordination may be accessed. The ability of the labile phosphine arms to associate and dissociate may facilitate catalysis. Thus, this carbodiimide provides a tunable, reliable one step precursor to novel substituted amidinates and guanidinates for homogeneous transition metal catalysis.

Date Created
2022-05
Agent

On metal speciation and bioavailability in the biosphere via estimation of metal-ligand thermodynamic properties

Description
Due to analytical limitations, thermodynamic modeling is a lucrative alternative for obtaining metal speciation in chemically complex systems like life. However, such modeling is limited by the lack of equilibrium constant data for metal-complexation reactions, particularly for metal-organic species. These

Due to analytical limitations, thermodynamic modeling is a lucrative alternative for obtaining metal speciation in chemically complex systems like life. However, such modeling is limited by the lack of equilibrium constant data for metal-complexation reactions, particularly for metal-organic species. These problems were ameliorated estimating these properties from 0-125°C for ~18,000 metal complexes of small molecules, proteins and peptides.

The estimates of metal-ligand equilibrium constants at 25°C and 1 bar were made using multiple linear free energy relationships in accordance with the metal-coordinating properties of ligands such as denticity, identity of electron donor group, inductive effects and steric hindrance. Analogous relationships were made to estimated metal-ligand complexation entropy that facilitated calculation of equilibrium constants up to 125°C using the van’t Hoff equation. These estimates were made for over 250 ligands that include carboxylic acids, phenols, inorganic acids, amino acids, peptides and proteins.

The stability constants mentioned above were used to obtain metal speciation in several microbial growth media including past bioavailability studies and compositions listed on the DSMZ website. Speciation calculations were also carried out for several metals in blood plasma and cerebrospinal fluid that include metals present at over micromolar abundance (sodium, potassium, calcium, magnesium, iron, copper and zinc) and metals of therapeutic or toxic potential (like gallium, rhodium and bismuth). Metal speciation was found to be considerably dependent on pH and chelator concentration that can help in the selection of appropriate ligands for gallium & rhodium based anticancer drugs and zinc-based antidiabetics. It was found that methanobactin can considerably alter copper speciation and is therefore a suitable agent for the treatment of Wilson Disease. Additionally, bismuth neurotoxicity was attributed to the low transferrin concentration in cerebrospinal fluid and the predominance of aqueous bismuth trihydroxide. These results demonstrate that metal speciation calculations using thermodynamic modeling can be extremely useful for understanding metal bioavailability in microbes and human bodily fluids.
Date Created
2019
Agent

Synthesis and applications of nanostructured zeolites from geopolymer chemistry

157827-Thumbnail Image.png
Description
Nanostructured zeolites, in particular nanocrystalline zeolites, are of great interest due to their efficient use in conventional catalysis, separations, and emerging applications. Despite the recent advances, fewer than 20 zeolite framework types have been synthesized in the form of

Nanostructured zeolites, in particular nanocrystalline zeolites, are of great interest due to their efficient use in conventional catalysis, separations, and emerging applications. Despite the recent advances, fewer than 20 zeolite framework types have been synthesized in the form of nanocrystallites and their scalable synthesis has yet to be developed and understood. Geopolymers, claimed to be “amorphous cousins of zeolites”, are a class of ceramic-like aluminosilicate materials with prominent application in construction due to their unique chemical and mechanical properties. Despite the monolith form, geopolymers are fundamentally nanostructured materials and contain zeolite nanocrystallites.

Herein, a new cost-effective and scalable synthesis of various types of nanocrystalline zeolites based on geopolymer chemistry is presented. The study includes the synthesis of highly crystalline discrete nanorods of a CAN zeolite framework structure that had not been achieved hitherto, the exploration of the Na−Al−Si−H2O kinetic phase diagram of hydrogels that gives SOD, CAN and FAU nanocrystalline zeolites, and the discovery of a unique formation mechanism of highly crystalline nanostructured FAU zeolite with intermediate gel products that possess an unprecedented uniform distribution of elements. This study demonstrated the possibility of using high-concentration hydrogels for the synthesis of nanocrystalline zeolites of additional framework structures.

Moreover, a comprehensive study on nanostructured FAU zeolites ion-exchanged with Ag+, Zn2+, Cu2+ and Fe2+ for antibacterial applications is presented, which comprises metal ion release kinetics, antibacterial properties, and cytotoxicity. For the first time, superior metal ion release performance was confirmed for the nanostructured zeolites compared to their micron-sized counterparts. The metal ion-exchanged FAU nanostructured zeolites were established as new effective antibacterial materials featuring their unique physiochemical, antibacterial, and cytotoxic properties.
Date Created
2019
Agent

Synthesis and properties of Sn-based group IV alloys

157802-Thumbnail Image.png
Description
Sn-based group IV materials such as Ge1-xSnx and Ge1-x-ySixSny alloys have great potential for developing Complementary Metal Oxide Semiconductor (CMOS) compatible devices on Si because of their tunable band structure and lattice constants by controlling Si and/or Sn contents. Growth

Sn-based group IV materials such as Ge1-xSnx and Ge1-x-ySixSny alloys have great potential for developing Complementary Metal Oxide Semiconductor (CMOS) compatible devices on Si because of their tunable band structure and lattice constants by controlling Si and/or Sn contents. Growth of Ge1-xSnx binaries through Molecular Beam Epitaxy (MBE) started in the early 1980s, producing Ge1-xSnx epilayers with Sn concentrations varying from 0 to 100%. A Chemical Vapor Deposition (CVD) method was developed in the early 2000s for growing Ge1-xSnx alloys of device quality, by utilizing various chemical precursors. This method dominated the growth of Ge1-xSnx alloys rapidly because of the great crystal quality of Ge1-xSnx achieved. As the first practical ternary alloy completely based on group IV elements, Ge1-x-ySixSny decouples bandgap and lattice constant, becoming a prospective CMOS compatible alloy. At the same time, Ge1-x-ySixSny ternary system could serve as a thermally robust alternative to Ge1-ySny binaries given that it becomes a direct semiconductor at a Sn concentration of 6%-10%. Ge1-x-ySixSny growths by CVD is summarized in this thesis. With the Si/Sn ratio kept at ~3.7, the ternary alloy system is lattice matched to Ge, resulting a tunable direct bandgap of 0.8-1.2 eV. With Sn content higher than Si content, the ternary alloy system could have an indirect-to-direct transition, as observed for Ge1-xSnx binaries. This thesis summarizes the development of Ge1-xSnx and Ge1-x-ySixSny alloys through MBE and CVD in recent decades and introduces an innovative direct injection method for synthesizing Ge1-x-ySixSny ternary alloys with Sn contents varying from 5% to 12% and Si contents kept at 1%-2%. Grown directly on Si (100) substrates in a Gas-phase Molecular Epitaxy (GSME) reactor, both intrinsic and n-type doped Ge1-x-ySixSny with P with thicknesses of 250-760 nm have been achieved by deploying gas precursors Ge4H10, Si4H10, SnD4 and P(SiH3)3 at the unprecedented low growth temperatures of 190-220 °C. Compressive strain is reduced and crystallinity of the Ge1-x-ySixSny epilayer is improved after rapid thermal annealing (RTA) treatments. High Resolution X-ray Diffraction (HR-XRD), Rutherford Backscattering Spectrometry (RBS), cross-sectional Transmission Electron Microscope (XTEM) and Atomic Force Microscope (AFM) have been combined to characterize the structural properties of the Ge1-x-ySixSny samples, indicating good crystallinity and flat surfaces.
Date Created
2019
Agent

Synthesis of redox active neuroprotective therapeutic agents

157216-Thumbnail Image.png
Description
Mitochondria are energy-producing organelles present in eukaryotic cells. Energy as adenosine triphosphate (ATP) is produced at the end of a series of electron transfers called the electron transport chain (ETC). Such a highly coordinated and regulated series of electron transfer

Mitochondria are energy-producing organelles present in eukaryotic cells. Energy as adenosine triphosphate (ATP) is produced at the end of a series of electron transfers called the electron transport chain (ETC). Such a highly coordinated and regulated series of electron transfer reactions give rise to a small percentage of electron leakage which, by the subsequent reduction of molecular oxygen, produce superoxide anions (O2.-). These anions initiate the production of additional highly reactive oxygen-containing radicals commonly known as reactive oxygen species (ROS). Although cells are equipped with endogenous antioxidant systems to minimize ROS accumulation, these endogenous defense systems become inadequate when ROS generation is increased. When ROS production occurs in excess, the cell is said to be under oxidative stress. Unchecked ROS production causes damage to cellular macromolecules, which in turn leads to cell death. Dysfunctional mitochondria and subsequent cell degeneration are a common cause of neurodegenerative diseases such as Friedreich’s ataxia (FRDA) and Alzheimer’s disease (AD). Therefore, targeting the mitochondria by neuroprotective drugs is imperative for the treatment of such diseases. In Chapter 1, the functioning of the ETC is described. Moreover, excessive ROS production and its consequences are also described.

FRDA is a progressive neurodegenerative disease caused by insufficient expression of frataxin (FXN). FXN is instrumental in the assembly of iron-sulfur clusters, which in turn are critical for the functioning of the ETC enzyme complexes. Therapeutic agents which, in addition to being antioxidants also increase FXN, can be good drugs to counter FRDA. In Chapter 2, the synthesis of phenothiazine analogues are described. Moreover, their efficacy as antioxidants and their ability to increase FXN are described. Finally, the synthesis of a reduced salt form of one analogue and its ability to cross the blood brain barrier (BBB) in mouse models of the disease is also described.

In Chapter 3, to discover potent neuroprotective drugs, a pair of regioisomeric benzoquinone analogues has been synthesized. The compounds were tested for their efficacy as antioxidants. Additionally, two pyrimidinol based redox cores were analyzed electrochemically to enable a better understanding of the mechanism of action of the multifunctional radical quencher (MRQ) class of antioxidants.
Date Created
2019
Agent

Expanding the optical capabilities of germanium in the infrared range through group IV and III-V-IV alloy systems

156807-Thumbnail Image.png
Description
The work described in this thesis explores the synthesis of new semiconductors in the Si-Ge-Sn system for application in Si-photonics. Direct gap Ge1-ySny (y=0.12-0.16) alloys with enhanced light emission and absorption are pursued. Monocrystalline layers are grown on Si platforms

The work described in this thesis explores the synthesis of new semiconductors in the Si-Ge-Sn system for application in Si-photonics. Direct gap Ge1-ySny (y=0.12-0.16) alloys with enhanced light emission and absorption are pursued. Monocrystalline layers are grown on Si platforms via epitaxy-driven reactions between Sn- and Ge-hydrides using compositionally graded buffer layers that mitigate lattice mismatch between the epilayer and Si platforms. Prototype p-i-n structures are fabricated and are found to exhibit direct gap electroluminescence and tunable absorption edges between 2200 and 2700 nm indicating applications in LEDs and detectors. Additionally, a low pressure technique is described producing pseudomorphic Ge1-ySny alloys in the compositional range y=0.06-0.17. Synthesis of these materials is achieved at ultra-low temperatures resulting in nearly defect-free films that far exceed the critical thicknesses predicted by thermodynamic considerations, and provide a chemically driven route toward materials with properties typically associated with molecular beam epitaxy.

Silicon incorporation into Ge1-ySny yields a new class of Ge1-x-ySixSny (y>x) ternary alloys using reactions between Ge3H8, Si4H10, and SnD4. These materials contain small amounts of Si (x=0.05-0.08) and Sn contents of y=0.1-0.15. Photoluminescence studies indicate an intensity enhancement relative to materials with lower Sn contents (y=0.05-0.09). These materials may serve as thermally robust alternatives to Ge1-ySny for mid-infrared (IR) optoelectronic applications.

An extension of the above work is the discovery of a new class of Ge-like Group III-V-IV hybrids with compositions Ga(As1–xPx)Ge3 (x=0.01-0.90) and (GaP)yGe5–2y related to Ge1-x-ySixSny in structure and properties. These materials are prepared by chemical vapor deposition of reactive Ga-hydrides with P(GeH3)3 and As(GeH3)3 custom precursors as the sources of P, As, and Ge incorporating isolated GaAs and GaP donor-acceptor pairs into diamond-like Ge-based structures. Photoluminescence studies reveal bandgaps in the near-IR and large bowing of the optical behavior relative to linear interpolation of the III-V and Ge end members. Similar materials in the Al-Sb-B-P system are also prepared and characterized. The common theme of the above topics is the design and fabrication of new optoelectronic materials that can be fully compatible with Si-based technologies for expanding the optoelectronic capabilities of Ge into the mid-IR and beyond through compositional tuning of the diamond lattice.
Date Created
2018
Agent