Probing the Radio Sky with the Low Frequency Array

134761-Thumbnail Image.png
Description
The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very low frequencies (10-240 MHz) and consists of an extensive interferometry

The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very low frequencies (10-240 MHz) and consists of an extensive interferometry array of dipole antenna stations distributed throughout the Netherlands and Europe which allows it to achieve superb angular resolution. I investigate a part of the northern sky to search for rare radio objects such as radio haloes and radio relics that may have not been able to have been resolved by other radio telescopes.
Date Created
2016-12
Agent

Companions and Environments of Low-Mass Stars: From Star-Forming Regions to the Field

Description
The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In

The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In this thesis, I describe results from three studies investigating the companion properties and environments of low-mass systems: (1) The 245-star M-dwarfs in Multiples (MinMs) Survey, a volume-limited survey of field M-dwarf companions within 15 pc, (2) the Taurus Boundary of Stellar/Substellar (TBOSS) Survey, an ongoing study of disk properties for low-mass members within the Taurus star-forming region, and (3) spectroscopy of a brown dwarf companion using the Gemini Planet Imager (GPI).

Direct imaging of M-dwarfs is a sensitive technique to identify low-mass companions over a wide range of orbital separation, and the high proper motion of nearby M-dwarfs eases confirmation of new multiple stars. Combining AO and wide-field imaging, the MinMs Survey provides new measurements of the companion star fraction (CSF), separation distribution, and mass ratio distribution for the nearest K7-M6 dwarfs. These results demonstrate the closer orbital separations (~6 AU) and lower frequency (~23% CSF) of M-dwarf binaries relative to higher-mass stars.

From the TBOSS project, I report 885µm Atacama Large Millimeter/sub-millimeter Array continuum measurements for 24 Taurus members spanning the stellar/substellar boundary (M4-M7.75). Observations of submillimeter emission from dust grains around the lowest-mass hosts show decreasing disk dust mass for decreasing host star mass, consistent with low frequencies of giant planets around M-dwarfs. Compared to the older stellar association of Upper Scorpius, Taurus disks have a factor of four higher mass in submillimeter-sized grains.

From the GPI Exoplanet Survey, I describe near-infrared spectroscopy of an unusually red companion orbiting inside the debris disk of an F5V star. As the second brown dwarf discovered within the innermost region of a debris disk, the properties of this system offer important dynamical constraints for companion-disk interaction and a useful benchmark for brown dwarf and giant planet atmospheric study.
Date Created
2017
Agent

H-alpha emitting galaxies at z ~0.6 in the deep and wide narrowband survey

155509-Thumbnail Image.png
Description
New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique

infrared imaging program with

New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique

infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and

sensitivity (9.9 × 10 −18 erg/cm 2 /s at 5σ).

The present sample, based on a single DAWN field, contains 116 Hα emission-

line candidates at z∼0.62, 25% of which have spectroscopic confirmations. These

candidates have been selected through comparison of narrow and broad-band images

in the infrared and through matching with existing catalogs in the COSMOS field.

The dust-corrected LF is well described by a Schechter function with L* = 10 42.64±0.92

erg s −1 , Φ* = 10 −3.32±0.93 Mpc −3 (L* Φ* = 10 39.40±0.15 ), and α = −1.75 ± 0.09. From

this LF, a SFR density of ρ SF R =10 −1.37±0.08 M○ yr −1 Mpc −3 was calculated. An

additional cosmic variance uncertainty of ∼ 20% is also expected. Both the faint

end slope and luminosity density that are derived are consistent with prior results at

similar redshifts, with reduced uncertainties.

An analysis of these Hα emitters’ sizes is also presented, showing a direct corre-

lation between the galaxies’ sizes and their Hα emission.
Date Created
2017
Agent

Exoplanet meteorology: characterizing the atmospheres of directly imaged sub-stellar objects

Description
The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and

The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi-epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity.

For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system. By analyzing archival HST data and examining the near-infrared colors of HD 106906b, we conclude that the companion shows weak evidence of a circumplanetary dust disk or cloud. Finally, I measure the properties of the low mass directly imaged planet 51 Eridani b. We combined published J, H spectra with updated LP photometry, new K1, K2 spectra, and MS photometry. The new data confirms that the planet has redder than similar spectral type objects, which might be due to the planet still transitioning from to L-to-T. Model atmospheres indicate a cooler effective temperature best fit by a patchy cloud atmosphere making 51 Eri b an excellent candidate for future variability studies with the James Webb Space Telescope.
Date Created
2017
Agent

Advancement of heterodyne focal plane arrays for terahertz astronomy

155091-Thumbnail Image.png
Description
The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne

The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne receiver that can achieve system temperatures of less than 200 K, the specification for ALMA band-9. The KAPPa receiver uses a novel design of a permanent magnet to suppress the noise generated by the DC Josephson effect. This is in stark contrast to the benchmark solution of an electromagnet that is both too expensive and too large for use in kilo-pixel arrays. I present a simple, robust design for a single receiver element that can be tessellated throughout a telescope's focal plane to make a ~1000 pixel array, which is much larger than the current state-of-the-art array, SuperCam, at 64 pixels and ~345 GHz.

While the original goal to develop receiver technologies has been accomplished, the path to this accomplishment required a far more holistic approach than originally anticipated. The goal of the present work has expended exponentially from that of KAPPas promised technical achievements. In the present work, KAPPa and its extension, I present solutions ranging from 1) the creation of large scale astronomical maps, 2) metaheuristic algorithms that solve tasks too complex for humans, and 3) detailed technical assembly of microscopic circuit components. Each part is equally integral for the realization of a ~1000 pixel THz arrays.

Our automated tuning algorithm, Alice, uses differential evolution techniques and has been extremely successful in its implementation. Alice provides good results for characterizing the extremely complex tuning topology of THz receivers. More importantly, it has accomplished rapid optimization of an entire array without human intervention. In the age of big data astronomy, I have prepared THz heterodyne receiver arrays by making cutting edge community-oriented data analysis tools for the future of large-scale discovery. I present a from-scratch reduction and analysis architecture developed for observations of 100s of square degree on-the-sky maps with SuperCam to address the gulf between observing with single dish antennas versus a truly integrated focal plane array.
Date Created
2016
Agent

A Trio of Gamma-Ray Burst Supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu

129353-Thumbnail Image.png
Description

We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. For GRB 130215A/SN 2013ez, we also present optical spectroscopy at t − t0 = 16.1 d, which covers

We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. For GRB 130215A/SN 2013ez, we also present optical spectroscopy at t − t0 = 16.1 d, which covers rest-frame 3000–6250 Å. Based on Fe ii λ5169 and Si ii λ6355, our spectrum indicates an unusually low expansion velocity of ~4000–6350 km s-1, the lowest ever measured for a GRB-SN. Additionally, we determined the brightness and shape of each accompanying SN relative to a template supernova (SN 1998bw), which were used to estimate the amount of nickel produced via nucleosynthesis during each explosion. We find that our derived nickel masses are typical of other GRB-SNe, and greater than those of SNe Ibc that are not associated with GRBs. For GRB 130831A/SN 2013fu, we used our well-sampled R-band light curve (LC) to estimate the amount of ejecta mass and the kinetic energy of the SN, finding that these too are similar to other GRB-SNe. For GRB 130215A, we took advantage of contemporaneous optical/NIR observations to construct an optical/NIR bolometric LC of the afterglow. We fit the bolometric LC with the millisecond magnetar model of Zhang & Mészáros (2001, ApJ, 552, L35), which considers dipole radiation as a source of energy injection to the forward shock powering the optical/NIR afterglow. Using this model we derive an initial spin period of P = 12 ms and a magnetic field of B = 1.1 × 1015 G, which are commensurate with those found for proposed magnetar central engines of other long-duration GRBs.

Date Created
2014-08-01
Agent

Investigating Signatures of Cosmological Time Dilation in Duration Measures of Prompt Gamma-Ray Burst Light Curves

129535-Thumbnail Image.png
Description

We study the evolution with redshift of three measures of gamma-ray burst (GRB) duration (T90, T50 and TR45) in a fixed rest-frame energy band for a sample of 232 Swift/Burst Alert Telescope (BAT) detected GRBs. Binning the data in redshift

We study the evolution with redshift of three measures of gamma-ray burst (GRB) duration (T90, T50 and TR45) in a fixed rest-frame energy band for a sample of 232 Swift/Burst Alert Telescope (BAT) detected GRBs. Binning the data in redshift we demonstrate a trend of increasing duration with increasing redshift that can be modelled with a power law for all three measures. Comparing redshift defined subsets of rest-frame duration reveals that the observed distributions of these durations are broadly consistent with cosmological time dilation. To ascertain if this is an instrumental effect, a similar analysis of Fermi/Gamma-ray Burst Monitor data for the 57 bursts detected by both instruments is conducted, but inconclusive due to small number statistics. We then investigate underpopulated regions of the duration redshift parameter space. We propose that the lack of low-redshift, long duration GRBs is a physical effect due to the sample being volume limited at such redshifts. However, we also find that the high-redshift, short duration region of parameter space suffers from censorship as any Swift GRB sample is fundamentally defined by trigger criteria determined in the observer frame energy band of Swift/BAT. As a result, we find that the significance of any evidence for cosmological time dilation in our sample of duration measures typically reduces to <2σ.

Date Created
2014-11-11
Agent

Identifying High-Redshift Gamma-Ray Bursts With RATIR

129601-Thumbnail Image.png
Description

We present a template-fitting algorithm for determining photometric redshifts, z phot, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution,

We present a template-fitting algorithm for determining photometric redshifts, z phot, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z phot < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of zphot in the ranges of 4 < zphot lesssim 8 and 9 < zphot < 10 and can robustly determine when z phot > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z phot < 4 when z sim > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

Date Created
2014-07-01
Agent

Markov chain Monte Carlo modeling of high-redshift quasar host galaxies in Hubble Space Telescope imaging

152408-Thumbnail Image.png
Description
Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it

Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can outshine the combined light of all the stars in the host galaxy. Studies of quasar host galaxies at ultraviolet to near-infrared wavelengths are fundamentally limited by the precision with which the light from the central quasar accretion can be disentangled from the light of stars in the surrounding host galaxy. In this Dissertation, I discuss direct imaging of quasar host galaxies at redshifts z ≃ 2 and z ≃ 6 using new data obtained with the Hubble Space Telescope. I describe a new method for removing the point source flux using Markov Chain Monte Carlo parameter estimation and simultaneous modeling of the point source and host galaxy. I then discuss applications of this method to understanding the physical properties of high-redshift quasar host galaxies including their structures, luminosities, sizes, and colors, and inferred stellar population properties such as age, mass, and dust content.
Date Created
2014
Agent

Morphological perspectives on galaxy evolution since z̃1.5

151756-Thumbnail Image.png
Description
Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With

Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to study the formation and evolution of galaxies, at an unrivaled spatial resolution, over more than 90% of cosmic time. Here, I present results from two complementary studies of galaxy evolution in the local and intermediate redshift Universe which used new and archival HST images. First, I use archival broad-band HST WFPC2 optical images of local (d<63 Mpc) Seyfert-type galaxies to test the observed correlation between visually-classified host galaxy dust morphology and AGN class. Using quantitative parameters for classifying galaxy morphology, I do not measure a strong correlation between the galaxy morphology and AGN class. This result could imply that the Unified Model of AGN provides a sufficient model for the observed diversity of AGN, but this result could also indicate the quantitative techniques are insufficient for characterizing the dust morphology of local galaxies. To address the latter, I develop a new automated method using an inverse unsharp masking technique coupled to Source Extractor to detect and measure dust morphology. I measure no strong trends with dust-morphology and AGN class using this method, and conclude that the Unified Model remains sufficient to explain the diversity of AGN. Second, I use new UV-optical-near IR broad-band images obtained with the HST WFC3 in the Early Release Science (ERS) program to study the evolution of massive, early-type galaxies. These galaxies were once considered to be ``red and dead'', as a class uniformly devoid of recent star formation, but observations of these galaxies in the local Universe at UV wavelengths have revealed a significant fraction (30%) of ETGs to have recently formed a small fraction (5-10%) of their stellar mass in young stars. I extend the study of recent star formation in ETGs to intermediate-redshift 0.35<1.5 with the ERS data. Comparing the mass fraction and age of young stellar populations identified in these ETGs from two-component SED analysis with the morphology of the ETG and the frequency of companions, I find that at this redshift many ETGs are likely to have experienced a minor burst of recent star formation. The mechanisms driving this recent star formation are varied, and evidence for both minor merger driven recent star formation as well as the evolution of transitioning ETGs is identified.
Date Created
2013
Agent