Description
The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In

The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In this thesis, I describe results from three studies investigating the companion properties and environments of low-mass systems: (1) The 245-star M-dwarfs in Multiples (MinMs) Survey, a volume-limited survey of field M-dwarf companions within 15 pc, (2) the Taurus Boundary of Stellar/Substellar (TBOSS) Survey, an ongoing study of disk properties for low-mass members within the Taurus star-forming region, and (3) spectroscopy of a brown dwarf companion using the Gemini Planet Imager (GPI).

Direct imaging of M-dwarfs is a sensitive technique to identify low-mass companions over a wide range of orbital separation, and the high proper motion of nearby M-dwarfs eases confirmation of new multiple stars. Combining AO and wide-field imaging, the MinMs Survey provides new measurements of the companion star fraction (CSF), separation distribution, and mass ratio distribution for the nearest K7-M6 dwarfs. These results demonstrate the closer orbital separations (~6 AU) and lower frequency (~23% CSF) of M-dwarf binaries relative to higher-mass stars.

From the TBOSS project, I report 885µm Atacama Large Millimeter/sub-millimeter Array continuum measurements for 24 Taurus members spanning the stellar/substellar boundary (M4-M7.75). Observations of submillimeter emission from dust grains around the lowest-mass hosts show decreasing disk dust mass for decreasing host star mass, consistent with low frequencies of giant planets around M-dwarfs. Compared to the older stellar association of Upper Scorpius, Taurus disks have a factor of four higher mass in submillimeter-sized grains.

From the GPI Exoplanet Survey, I describe near-infrared spectroscopy of an unusually red companion orbiting inside the debris disk of an F5V star. As the second brown dwarf discovered within the innermost region of a debris disk, the properties of this system offer important dynamical constraints for companion-disk interaction and a useful benchmark for brown dwarf and giant planet atmospheric study.
Reuse Permissions
  • Download count: 3

    Details

    Title
    • Companions and Environments of Low-Mass Stars: From Star-Forming Regions to the Field
    Contributors
    Date Created
    2017
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Doctoral Dissertation Astrophysics 2017

    Machine-readable links