Testing a Fast, Automated Reduction Pipeline for Colibri

Description
Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri

Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri is a telescope being built at the San Pedro Martir Observatory in Baja, CA, MX with high sensitivity in order to study these events at a high redshift. Due to how quickly GRBs occur, it is essential to develop an image reduction pipeline that can quickly and accurately detect these events. Using existing image reduction software from Coatli, which was programmed and optimized for speed using python, numerous time trials were performed in order to determine if the pipeline meets the time requirements with various factors being adjusted. The goal of this experiment is for the telescope to respond to, capture, and reduce the images in under 3 minutes. It was determined that the reduction was optimized when the number of files to be reduced was set equal to 16 or higher by changing the batch number and the blank sky subtraction function was performed. As for the number of exposures, one can take up to four 30 second exposures or twenty 5 second exposures and reduce them in under 3 minutes.
Date Created
2024-05
Agent

Observational Studies of Emission Line Galaxies in the Near and Distant Universe

171973-Thumbnail Image.png
Description
Nebular emission-lines offer a powerful tool for studying the physical properties and chemical compositions of galaxies in the near and distant universe. They are excellent tracers of star formation activity in galaxies as well as efficient probes of intergalactic medium

Nebular emission-lines offer a powerful tool for studying the physical properties and chemical compositions of galaxies in the near and distant universe. They are excellent tracers of star formation activity in galaxies as well as efficient probes of intergalactic medium in the early universe. This dissertation presents findings from three different studies of emission-line galaxies (a.k.a. line emitters) at low and high redshifts, based on imaging and spectroscopic observations. The first study explores Hα emitters at z ~ 0.6 from the Cosmic Deep And Wide Narrow-band (DAWN) survey, providing robust measurements of the Hα luminosity function (LF) and the star-formation rate density (SFRD) at z ~ 0.6. The effects of different dust-extinction corrections on the measured LF were also investigated in this study. Owing to the observing strategy employed in this survey, this study demonstrates the importance of performing deep and wide-field observations, in order to robustly constrain the entire LF. In the second study, 21 Lyman-α emitter (LAE) candidates at z ~ 7 from the Lyman-Alpha Galaxies in the Epoch of Reionization (LAGER) survey were followed up spectroscopically, using Low Resolution Imaging Spectrometer (LRIS) on the Keck telescope. 15 of these were confirmed to be LAEs, obtaining a spectroscopic confirmation success rate of ~ 80% for LAGER LAE candidates. Apart from Lyman- α, no other rest-frame ultra-violet (UV) nebular lines were detected, with a 2σ upper limit for the ratio of NV/Lyα ≲ 0.27. These confirmations help validate the neutral Hydrogen fraction estimates from LAGER, which is consistent with a fully ionized universe at z ~ 7. The final study investigated the presence of black hole/active galactic nuclei (AGN) signatures among Green Pea (GP) galaxies, using mid-infrared (MIR) observations from the Wide-field Infrared Survey Explorer (WISE) mission. 31 GPs were selected as candidate AGN based on a stringent MIR color-color diagnostic including two GPs exhibiting notable variability in the shorter two WISE bandpasses. Given that GPs are one of the best analogs of high-redshift galaxies, findings from this study suggest that AGN activity could be responsible for the hard ionizing radiation observed in some GPs, which has crucial implications on the sources likely to have contributed towards cosmic reionization.
Date Created
2022
Agent

Photometric Redshift Estimation and Intracluster Light Study with Narrow-Band Photometry of Galaxy Clusters

171610-Thumbnail Image.png
Description
As a demonstration study of low-resolution spectrophotometry, the photometric redshift estimation with narrow-band optical photometry of nine galaxy clusters is presented in this thesis. A complete data reduction process of the photometryusing up to 16 10nm wide narrow-band optical filters

As a demonstration study of low-resolution spectrophotometry, the photometric redshift estimation with narrow-band optical photometry of nine galaxy clusters is presented in this thesis. A complete data reduction process of the photometryusing up to 16 10nm wide narrow-band optical filters from 490nm − 660nm are provided. Narrow-band photometry data are combined with broad-band photometry (SDSS/Pan-STARRS) for photometric redshift fitting. With available spectroscopic redshift data from eight of the fields, I evaluated the fitted photometric redshift results and showed that combining broad-band photometric data with narrow-band data result in improvements of factor 2-3, compared to redshift estimations from broad-band photometry alone. With 15 or 16 narrow-band data combined with SDSS (Sloan Digital Sky Survey) or Pan-STARRS1 (The Panoramic Survey Telescope and Rapid Response System) data, a Normalized Median Absolute Deviation of σNMAD ∼ 0.01−0.016 can be achieved. The multiband images of galaxy cluster ABELL 611 have been used to further study intracluster light around its brightest cluster galaxy (BCG). It can be shown here that fitting of BCG+ICL stellar properties using the averaged 1-dimensional radial profile is possible up to ∼ 100kpc within this cluster. The decreasing in age of the stellar population as a function of radius from the BCG+ICL profile, though not entirely conclusive, demonstrates possible future application of low-resolution spectrophotometry on the ICL studies. Finally, Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) mission planning study are covered, and a methodology of visualization tool for target availability is described.
Date Created
2022
Agent

Properties of the Faint (uJy) Radio Source Population

164759-Thumbnail Image.png
Description
I present a multi-spectral analysis of the faint, uJy, radio source population in the James Webb Space Telescope North Ecliptic Pole Time Domain Field. Very Long Baseline Array pointings at the 127 brightest of ~2500 radio galaxies identified with the

I present a multi-spectral analysis of the faint, uJy, radio source population in the James Webb Space Telescope North Ecliptic Pole Time Domain Field. Very Long Baseline Array pointings at the 127 brightest of ~2500 radio galaxies identified with the Very Large Array indicate active galactic nucleus contamination of approximately 9.45%. My estimates of 4.8 GHz brightness of this radio source population indicate an upper bound on this contamination of 10.6%. This is well within acceptable limits, in population studies, for the use of the radio-FIR relation in the JWST NEP TDF. This improves the utility of the field to the community by reducing the need for expensive FIR observations. I have also developed an extensive catalog of magnitudes and other data in visible bands of this population. My analysis in these bands does not give any conclusive criteria for distinguishing between AGN and SFGs. The strongest trends I do identify appear to be due to reddening by interstellar dust. Future follow-up will focus on characterizing individual sources in further depth.
Date Created
2022-05
Agent

SED Analysis of 43 Spectroscopically Confirmed Galaxies at z ~ 6 to Constrain Possible Relationships between UV Slope, Model Dust Attenuation, and Escape Fraction

148332-Thumbnail Image.png
Description

The reionization of the Universe is thought to have completed by redshift z~5.5. To probe this era, galaxy observations in the Subaru Deep Field (SDF) have identified more than 100 galaxies at z~6, many spectroscopically confirmed through follow-up observations. Using

The reionization of the Universe is thought to have completed by redshift z~5.5. To probe this era, galaxy observations in the Subaru Deep Field (SDF) have identified more than 100 galaxies at z~6, many spectroscopically confirmed through follow-up observations. Using available optical/IR data, we model with CIGALE the spectral energy distributions (SEDs) of 43 SDF galaxies, including newly acquired data from the UKIRT WFCAM K-band for seven previously studied objects. In particular, modeling deep IR photometry is sensitive to the galaxy's Lyman continuum (LyC) escape fraction (fesc). We find the median implied fesc value as ~0.4+/-0.1 (mean error). Significant uncertainties in data and fitting result in a large range of fesc for individual objects, but analysis suggests that fesc is likely high enough for galaxies to finish reionization by z~6. More importantly, we find trends between the CIGALE UV slope b, fesc, and dust extinction E(B-V): for a given E(B-V), b appear steeper by ~0.4 than at z=0. Lower fesc values appear to be associated with bluer b and lower E(B-V), but only weakly. This suggests that LyC could have escaped through holes with sufficiently wide opening angles surrounding the ISM from outflows of supernovae and/or weak AGN to escape, but resulting in a large range of implied fesc values depending on the orientation of each galaxy. The current HST, Spitzer and ground-based photometric and model errors for the 43 galaxies are large, so IR spectroscopic observations with the James Webb Space Telescope are needed to better constrain this possibility.

Date Created
2021-05
Agent

Image Simulations for Testing the Fidelity of SKYSURF Background Measurement Algorithms

148427-Thumbnail Image.png
Description

The goal of Hubble Space Telescope Cycle 27–29 Archival Legacy project “SKYSURF” is to measure the panchromatic sky surface brightness and source catalogs from all archival HST ACS and WFC3 images since the launch of these instruments by the Space

The goal of Hubble Space Telescope Cycle 27–29 Archival Legacy project “SKYSURF” is to measure the panchromatic sky surface brightness and source catalogs from all archival HST ACS and WFC3 images since the launch of these instruments by the Space Shuttle—more than 57,000 images in total since 2002. All SKYSURF images together will measure the panchromatic Zodiacal brightness, the Diffuse Galactic Light, and the Extragalactic Background Light. SKYSURF will significantly constrain the various amounts of diffuse light in the universe with major ramifications for cosmic star formation and planet formation.<br/><br/>Several sky background measurement algorithms are capable of measuring the background levels of images in the SKYSURF database. To test the fidelity of these sky background measurement algorithms, images with known sky background and noise levels were necessary to determine quantitatively how far a sky measurement algorithm strays from the true value. For this purpose, I developed an algorithm that could create simulated images for filter F125W of the WFC3/IR instrument on the Hubble Space Telescope (HST). Filter F125W was selected because the Extragalactic Background Light is brightest in this wavelength band; moreover, the COBE Zodiacal light measurement is also at 1.25 microns. The simulated images created contain stars, galaxies, cosmic rays, and light gradients. We discuss here how these simulated images were made and the different kinds of simulated images that were produced.

Date Created
2021-05
Agent

Galaxy Evolution in the Local and the High-z Universe Through Optical+near-IR Spectroscopy

158521-Thumbnail Image.png
Description
A key open problem within galaxy evolution is to understand the evolution of galaxies towards quiescence. This work investigates the suppression of star-formation through shocks and turbulence at low-redshift, and at higher-redshifts, this work investigates the use of features within

A key open problem within galaxy evolution is to understand the evolution of galaxies towards quiescence. This work investigates the suppression of star-formation through shocks and turbulence at low-redshift, and at higher-redshifts, this work investigates the use of features within quiescent galaxy spectra to redshift estimation, and passive evolution of aging stellar populations to understand their star-formation histories.

At low-$z$, this work focuses on the analysis of optical integral field spectroscopy data of a nearby ($z\sim0.0145$) unusual merging system, called the Taffy system because of radio emission that stretches between the two galaxies. This system, although a recent major-merger of gas-rich spirals, exhibits an atypically low star-formation rate and infrared luminosity. Strong evidence of shock heating as a mechanism for these atypical properties is presented. This result (in conjunction with many others) from the nearby Universe provides evidence for shocks and turbulence, perhaps due to mergers, as an effective feedback mechanism for the suppression of star-formation.

At intermediate and higher-$z$, this work focuses on the analysis of Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) G800L grism spectroscopy and photometry of galaxies with a discernible 4000\AA\ break. The usefulness of 4000\AA/Balmer breaks as redshift indicators by comparing photometric, grism, and spectrophotometric redshifts (SPZs) to ground-based spectroscopic redshifts, is quantified. A spectral energy distribution (SED) fitting pipeline that is optimized for combined HST grism and photometric data, developed for this project, is presented. This pipeline is a template-fitting based routine which accounts for correlated data between neighboring points within grism spectra via the covariance matrix formalism, and also accounts for galaxy morphology along the dispersion direction. Evidence is provided showing that SPZs typically improve the accuracy of photometric redshifts by $\sim$17--60\%. For future space-based observatories like the Nancy Grace Roman Space Telescope (formerly the Wide Field InfraRed Survey Telescope, i.e., WFIRST) and Euclid, this work predicts $\sim$700--4400 galaxies\,degree$^{-2}$, within $1.6 \lesssim z \lesssim 3.4$, for galaxies with 4000\AA\ breaks and continuum-based redshifts accurate to $\lesssim$2\%.

This work also investigates the star-formation histories of massive galaxies ($\mathrm{M_s \geq 10^{10.5}\, M_\odot}$). This is done through the analysis of the strength of the Magnesium absorption feature, Mgb, at $\sim$5175\AA. This analysis is carried out on stacks of HST ACS G800L grism data, stacked for galaxies binned on a color vs stellar mass plane.
Date Created
2020
Agent

Dwarf galaxies as laboratories of protogalaxy physics: canonical star formation laws at low metallicity

157761-Thumbnail Image.png
Description
In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch of reionization to direct astronomical observation. One of the primary

In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch of reionization to direct astronomical observation. One of the primary tools used to understand the bulk astrophysical properties of the high-redshift universe are empirically-derived star-forming laws, which relate observed luminosity to fundamental astrophysical quantities such as star formation rate. The radio/infrared relation is one of the more mysterious of these relations: despite its somewhat uncertain astrophysical origins, this relation is extremely tight and linear, with 0.3 dex of scatter over five orders of magnitude in galaxy luminosity. The effects of primordial metallicities on canonical star-forming laws is an open question: a growing body of evidence suggests that the current empirical star forming laws may not be valid in the unenriched, metal-poor environment of the very early universe.

In the modern universe, nearby dwarf galaxies with less than 1/10th the Solar metal abundance provide an opportunity to recalibrate our star formation laws and study the astrophysics of extremely metal-deficient (XMD) environments in detail. I assemble a sample of nearby dwarf galaxies, all within 100 megaparsecs, with nebular oxygen abundances between 1/5th and 1/50th Solar. I identify the subsample of these galaxies with space-based mid- and far-infrared data, and investigate the effects of extreme metallicities on the infrared-radio relationship. For ten of these galaxies, I have acquired 40 hours of observations with the Jansky Very Large Array (JVLA). C-band (4-8 GHz) radio continuum emission is detected from all 10 of these galaxies. These represent the first radio continuum detections from seven galaxies in this sample: Leo A, UGC 4704, HS 0822+3542, SBS 0940+544, and SBS 1129+476. The radio continuum in these galaxies is strongly associated with the presence of optical H-alpha emission, with spectral slopes suggesting a mix of thermal and non-thermal sources. I use the ratio of the radio and far-infrared emission to investigate behavior of the C-band (4-8 GHz) radio/infrared relation at metallicities below 1/10th Solar.

I compare the low metallicity sample with the 4.8 GHz radio/infrared relationship from the KINGFISHER nearby galaxy sample Tabatabaei et al. 2017 and to the 1.4 GHz radio/infrared relationship from the blue compact dwarf galaxy sample of Wu et al. 2008. The infrared/radio ratio q of the low metallicity galaxies is below the average q of star forming galaxies in the modern universe. I compare these galaxies' infrared and radio luminosities to their corresponding Halpha luminosities, and find that both the infrared/Halpha and the radio/H-alpha ratios are reduced by nearly 1 dex in the low metallicity sample vs. higher metallicity galaxies; however the deficit is not straightforwardly interpreted as a metallicity effect.
Date Created
2018
Agent

The study of astronomical transients in the infrared

157735-Thumbnail Image.png
Description
Several key, open questions in astrophysics can be tackled by searching for and

mining large datasets for transient phenomena. The evolution of massive stars and

compact objects can be studied over cosmic time by identifying supernovae (SNe) and

gamma-ray bursts (GRBs) in other

Several key, open questions in astrophysics can be tackled by searching for and

mining large datasets for transient phenomena. The evolution of massive stars and

compact objects can be studied over cosmic time by identifying supernovae (SNe) and

gamma-ray bursts (GRBs) in other galaxies and determining their redshifts. Modeling

GRBs and their afterglows to probe the jets of GRBs can shed light on the emission

mechanism, rate, and energetics of these events.

In Chapter 1, I discuss the current state of astronomical transient study, including

sources of interest, instrumentation, and data reduction techniques, with a focus

on work in the infrared. In Chapter 2, I present original work published in the

Proceedings of the Astronomical Society of the Pacific, testing InGaAs infrared

detectors for astronomical use (Strausbaugh, Jackson, and Butler 2018); highlights of

this work include observing the exoplanet transit of HD189773B, and detecting the

nearby supernova SN2016adj with an InGaAs detector mounted on a small telescope

at ASU. In Chapter 3, I discuss my work on GRB jets published in the Astrophysical

Journal Letters, highlighting the interesting case of GRB 160625B (Strausbaugh et al.

2019), where I interpret a late-time bump in the GRB afterglow lightcurve as evidence

for a bright-edged jet. In Chapter 4, I present a look back at previous years of

RATIR (Re-ionization And Transient Infra-Red Camera) data, with an emphasis on

the efficiency of following up GRBs detected by the Fermi Space Telescope, before

some final remarks and brief discussion of future work in Chapter 5.
Date Created
2019
Agent

Correlating Galactic Magnetic Fields with Regions of Dense Star Formation using LOFAR and CALIFA

132911-Thumbnail Image.png
Description
I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha (Hα) emission of the tidally-interacting, edge-on, barred spiral galaxy UGC 9665.

I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha (Hα) emission of the tidally-interacting, edge-on, barred spiral galaxy UGC 9665. Synchrotron emission traces magnetic field strength to a rough first order, while Hα emission traces recent massive star formation. UGC 9665 was selected because it was included in the LOw Frequency ARray (LOFAR) TwoMetre Sky Survey (LoTSS; Shimwell et al. (2017)) as well as the Calar Alto Legacy Integral Field Area Survey (CALIFA; Sanchez et al. (2012)). I generated vertical intensity profiles at several distances along the disk from the galactic center for synchrotron emission and Hα in order to measure how the intensity of each falls off with distance from the midplane. In addition to correlating the vertical profiles to see if there is a relationship between star formation and magnetic field strength, I fit the LOFAR vertical profiles to characteristic Gaussian and exponential functions given by Dumke et al. (1995). Fitting these equations have been shown to be good indicators of the main mode of cosmic ray transport, whether it is advection (exponential fit) or diffusion (Gaussian fit) (Heesen et al. 2016). Cosmic rays originate from supernova,
and core collapse supernovae occur in star forming regions, which also produce
advective winds, so I test the correlation between star-forming regions and advective regions as predicted by the Heesen et al. (2016) method. Similar studies should be conducted on different galaxies in the future in order to further test these hypotheses and how well LOFAR and CALIFA complement each other, which will be made possible by the full release of the LOFAR Two-Metre Sky Survey (LoTSS) (Shimwell et al. 2017).
Date Created
2019-05
Agent