Human Brain Cell Type Classification Using Spatial Proteomics
- Author (aut): Ellison, Mischa A
- Thesis advisor (ths): Guo, Jia
- Committee member: Borges, Chad
- Committee member: Mastroeni, Diego
- Publisher (pbl): Arizona State University
An electric field can be applied to a microfluidic device in order to stop particle flow. Electroosmosis, electrophoresis, and dielectrophoresis act on the particles in different directions in the microfluidic channel, and when these forces create zero net force, the particle stops in the channel. The goal of the performed experiments is to investigate whether hydrostatic pressure generated by a syringe pump could help concentrate these particles and separate them from other contents. Introducing precise, adjustable hydrostatic pressure from the syringe pump provides another mechanism for controlling particle behavior. A microfluidic channel was crafted into a device connected to a syringe pump, and videos of 1 µm silica particles in the device were recorded under a microscope in order to show that samples could be infused into the device and concentrated or captured at a specific location in the channel using hydrostatic pressure. Capture of the particles occurred with and without controlled hydrostatic pressure, but these events occurred somewhat consistently at different voltages. In addition, particle movement in the channel with the syringe pump off was originally attributed to the electrokinetic forces. However, when compared to experiments without the syringe pump connected to the device, it became evident that the electrokinetic forces should have moved the particles in the opposite direction and that, in actuality, there is an inherent pressure in the device also affecting particle movement even when the syringe pump is not turned on.