The impact of Staphylococcus aureus volatiles on Pseudomonas aeruginosa phenotypes

131628-Thumbnail Image.png
Description
Persons with cystic fibrosis (CF) are highly susceptible to lung infections caused by the opportunistic pathogens Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA). By age 20, ~16% of CF patients have co-infections with these two bacteria, and this number grows

Persons with cystic fibrosis (CF) are highly susceptible to lung infections caused by the opportunistic pathogens Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA). By age 20, ~16% of CF patients have co-infections with these two bacteria, and this number grows as the patients age1. PA-SA co-infections are associated with worsened clinical outcomes in CF patients, but the reasons are not well understood. One hypothesis is that SA influences the production of PA virulence factors and other chronic infection phenotypes. Previous work in our lab investigated the effects of SA on PA quorum-regulated phenotypes when they are grown as planktonic co-cultures. We are expanding on this result by testing whether SA can influence PA phenotypes without being in direct contact, and without being able to exchange soluble secreted factors. In this study, we hypothesized that SA produces volatile organic compounds (VOCs) that cause changes in PA phenotypes leading to a down-regulation of motility and protease production, and increased antibiotic resistance. To test this hypothesis, we exposed two laboratory strains of PA to the VOCs produced by pre-grown lawns of two strains of SA, and measured PA motility by conducting swarming, swimming, and twitching assays, measuring protease production, as well as antibiotic sensitivity. After exposing PA to a pre-grown lawn of SA, there was a significant difference in some phenotypes compared to controls. There were significant decreases in swarming motility, twitching motility, and protease production, and an increase in a bright green pigment (possibly siderophores) when PA was exposed to SA. The degree of phenotypic alterations was dependent on both the PA strain and the SA strain being tested. Exposure to SA VOCs also altered PA sensitivity to ciprofloxacin, though one strain caused an increase in susceptibility while the other SA strain caused an increase in resistance. These data demonstrate that SA VOCs can influence PA phenotypes in vitro, which may have relevance for CF patients who are co-infected with these two bacteria.
Date Created
2020-05
Agent

Characterization of Lipid Transport Mutants that Overcome the Iron-Transport Defect in Escherichia coli

132599-Thumbnail Image.png
Description
When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing

When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing colonies emerge and overcome this growth defect. The work presented in this paper reports and characterizes these faster growing colonies (revertants) in an attempt to dissect the mechanism by which they overcome the TonB deficiency. Genomic analysis revealed mutations in yejM, a putative inner-to-outer membrane cardiolipin transporter, which are responsible for the faster growth phenotype in a tonB mutant background. Further characterization of the revertants revealed that they display hypersensitivity to vancomycin, a large antibiotic that is normally precluded from entering E. coli cells, and leaked periplasmic proteins into the culture supernatant, indicating a compromised outer membrane permeability barrier. All phenotypes were reversed by supplying the wild type copy of yejM on a plasmid, suggesting that yejM mutations are solely responsible for the observed phenotypes. In the absence of wild type tonB, however, the deletion of all known of cardiolipin synthase genes (clsABC) did not produce the phenotype similar to mutations in the yejM gene, suggesting the absence of cardiolipin from the outer membrane per se is not responsible for the increased outer membrane permeability. These data show that a defect in lipid biogenesis and transport can compromise outer membrane permeability barrier to allow siderophore intake and that YejM may have additional roles other than transporting cardiolipin.
Date Created
2019-05
Agent

The Effects of Staphylococcus aureus on Quorum-regulated Phenotypes in Pseudomonas aeruginosa

132863-Thumbnail Image.png
Description
Pseudomonas aeruginosa and Staphylococcus aureus are two key opportunistic pathogens that cause chronic lung infections in cystic fibrosis (CF) patients. Polymicrobial infections with P. aeruginosa and S. aureus are associated with worsened clinical outcomes in CF patients, and unknown still

Pseudomonas aeruginosa and Staphylococcus aureus are two key opportunistic pathogens that cause chronic lung infections in cystic fibrosis (CF) patients. Polymicrobial infections with P. aeruginosa and S. aureus are associated with worsened clinical outcomes in CF patients, and unknown still are the mechanisms that cause an increase in patient morbidity and mortality. Studying the interactions between P. aeruginosa and S. aureus is difficult because when co-cultured in vitro, P. aeruginosa drastically outcompetes and eradicates S. aureus cultures. This study explores methods for growing planktonic co-cultures of P. aeruginosa and S. aureus to stationary phase in equal proportions, and this will allow for the examination of changes in quorum-regulated phenotypes.

We grew liquid co-cultures of P. aeruginosa and S. aureus in LB Lennox media and examined their absolute and relative cell densities by plating the co-cultures on selective media. We evaluated the influence of oxygen concentration and co-inoculation vs. staggered inoculation on the ability to achieve a co-cultures with two P. aeruginosa (PA) and two S. aureus (SA) strains. The method that consistently produced PA:SA ratios in the range of 1:1 to 1:100 was to allow a SA mono-culture to reach stationary phase, and then re-suspend the SA cells in fresh media before inoculating with PA. With this method, it is possible to grow both PA and SA to stationary phase, a necessity for studying how PA and SA alter phenotypes in the presence of one another.

P. aeruginosa was found to produce less pyocyanin in the presence of S. aureus, but reduction in pyocyanin expression was depended on the strain of S. aureus. Elastase production differed between the two P. aeruginosa strains as well as between the two S. aureus strains, one increasing and one decreasing in expression. This data indicates that the responses of P. aeruginosa to S. aureus differ depending on both the P. aeruginosa and S. aureus strain present.
Date Created
2019-05
Agent

Engineering Cellular Transport Systems to Enhance Lignocellulose Bioconversion

156597-Thumbnail Image.png
Description
Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate

Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical pretreatments are at the center of the bottlenecks limiting further commercialization of lignocellulose conversion. Genetic and metabolic engineering has allowed researchers to manipulate microorganisms to overcome some of these challenges, but new innovative approaches are needed to make the process more commercially viable. Transport proteins represent an underexplored target in genetic engineering that can potentially help to control the input of lignocellulosic substrate and output of products/toxins in microbial biocatalysts. In this work, I characterize and explore the use of transport systems to increase substrate utilization, conserve energy, increase tolerance, and enhance biocatalyst performance.
Date Created
2018
Agent

The Effectiveness of Inhibition and Biofilm Disruption on Antibiotic Resistant E. coli

133345-Thumbnail Image.png
Description
The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to

The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase the dosage of currently prescribed antibiotics. This study attempted to combat two forms of antibiotic resistance. The first is the AcrAB efflux pump which is able to pump antibiotics out of the cell. The second is the biofilms that E. coli can form. By using an inhibitor, the pump should be unable to rid itself of an antibiotic. On the other hand, using Tween allows for biofilm formation to either be disrupted or for the biofilm to be dissolved. By combining these two chemicals with an antibiotic that the efflux pump is known to expel, low concentrations of each chemical should result in an equivalent or greater effect on bacteria compared to any one chemical in higher concentrations. To test this hypothesis a 96 well plate BEC screen test was performed. A range of antibiotics were used at various concentrations and with varying concentrations of both Tween and the inhibitor to find a starting point. Following this, Erythromycin and Ciprofloxacin were picked as the best candidates and the optimum range of the antibiotic, Tween, and inhibitor were established. Finally, all three chemicals were combined to observe the effects they had together as opposed to individually or paired together. From the results of this experiment several conclusions were made. First, the inhibitor did in fact increase the effectiveness of the antibiotic as less antibiotic was needed if the inhibitor was present. Second, Tween showed an ability to prevent recovery in the MBEC reading, showing that it has the ability to disrupt or dissolve biofilms. However, Tween also showed a noticeable decrease in effectiveness in the overall treatment. This negative interaction was unable to be compensated for when using the inhibitor and so the hypothesis was proven false as combining the three chemicals led to a less effective treatment method.
Date Created
2018-05
Agent

Genetic Manipulation of Pseudomonas aeruginosa Clinical Isolates

133571-Thumbnail Image.png
Description
Pseudomonas aeruginosa is a gram-negative bacterium and opportunistic pathogen that is the leading cause of chronic infection in the lungs of adults with cystic fibrosis (CF). During chronic lung infections, P. aeruginosa populations adapt genetically to the CF lung, selecting

Pseudomonas aeruginosa is a gram-negative bacterium and opportunistic pathogen that is the leading cause of chronic infection in the lungs of adults with cystic fibrosis (CF). During chronic lung infections, P. aeruginosa populations adapt genetically to the CF lung, selecting several important mutations required for long-term persistence. These genetic adaptations lead to phenotypic changes that are associated with the transition from early-stage to late-stage chronic CF infection.
The goal of this project was to develop tools for gene transfer between P. aeruginosa clinical isolates. These tools will allow shuffling of early/late stage of infection genes to restore wild-type phenotypes in late chronic infection isolates and create single-phenotype mutants in the early infection strains. This will allow isolation and investigation of single phenotypes in the clinical isolates to identify metabolic biomarkers specifically for detecting the target phenotypes.

The gene transfer mechanisms of transformation by electroporation, transformation by heat shock, and conjugation were tested using the plasmid pMQ30 with a construct to create an in-frame deletion of the rhlR gene (rhlR) via allelic exchange. The disruption of the P. aeruginosa wild-type rhlR gene leads to rhamnolipids-deficient mutant strains; therefore, rhamnolipids production was assessed to validate successful in-frame deletion of the rhlR gene in the P. aeruginosa clinical isolates and laboratory strains. Based on the efficiencies determined from the gene transfer mechanisms tested, the conjugation mechanism was determined to be the most efficient method for gene transfer in P. aeruginosa laboratory strains, and was used to investigate gene transfer in the P. aeruginosa clinical isolates.
Date Created
2018-05
Agent

Early Assessment of Phage Communities in Amazon Peatland Soils

135542-Thumbnail Image.png
Description
Little is known about the diversity and role of bacteriophages in carbon (C) rich ecosystems such as peatlands in tropical and temperate regions. In fact, there is no currently published assessment of phage abundance on diversity in a key tropical

Little is known about the diversity and role of bacteriophages in carbon (C) rich ecosystems such as peatlands in tropical and temperate regions. In fact, there is no currently published assessment of phage abundance on diversity in a key tropical ecosystem such as Amazon peatlands. To better understand phage assemblages in terrestrial ecosystems and how bacteriophages influence organic C cycling to final products like CO2 and CH4, phage communities and phage-like particles were recovered, quantified, and viable phage particles were enriched from pore water from contrasting Amazon peatlands. Here we present the first results on assessing Amazon bacteriophages on native heterotrophic bacteria. Several steps to test for methodological suitability were taken. First, the efficiency of iron flocculation method was determined using fluorescent microscopy counts of phage TLS, a TolC-specific and LPS-specific bacteriophage, and Escherichia coli host pre- and post-extraction method. One-hundred percent efficiency and 0.15% infectivity was evidenced. Infectivity effects were determined by calculating plaque forming units pre and post extraction method. After testing these methods, fieldwork in the Amazon peatlands ensued, where phages were enriched from pore water samples. Phages were extracted and concentrated by in tandem filtering rounds to remove organic matter and bacteria, and then iron flocculation to bind the phages and allow for precipitation onto a filter. Phage concentrates were then used for overall counts, with fluorescent microscopy, as well as phage isolation attempts. Phage isolations were performed by first testing for lysis of host cells in liquid media using OD600 absorbance of cultures with and without phage concentrate as well as attempts with the cross-streaking methods. Forty-five heterotrophic bacterial isolates obtained from the same Amazon peatland were challenged with phage concentrates. Once a putative host was found, steps were taken to further propagate and isolate the phage. Several putative phages were enriched from Amazon peatland pore water and require further characterization. TEM imaging was taken of two phages isolated from two plaques. Genomes of selected phages will be sequenced for identification. These results provide the groundwork for further characterizing the role bacteriophage play in C cycling and greenhouse gas production from Amazon peatland soils.
Date Created
2016-05
Agent

How the EnvZ/OmpR Two-component Regulatory System Affects fepA Gene Expression in Escherichia coli

135365-Thumbnail Image.png
Description
This study focused on the connection between the EnvZ/OmpR two-component regulatory system and the iron homeostasis system in Escherichia coli, specifically how a mutant form of EnvZ11/OmpR is able to reduce the expression of fepA::lacZ, a reporter gene fusion in

This study focused on the connection between the EnvZ/OmpR two-component regulatory system and the iron homeostasis system in Escherichia coli, specifically how a mutant form of EnvZ11/OmpR is able to reduce the expression of fepA::lacZ, a reporter gene fusion in E. coli. FepA is one of several outer membrane siderophore receptors that allow extracellular siderophores bound to iron to enter the cells to power various biological processes. Previous studies have shown that in E. coli cells that expressed a mutant allele of envZ, called envZ11, which led to altered expression of various iron genes including down regulation of fepA::lacZ. The wild type EnvZ/OmpR system is not considered to regulate iron genes, but because these envz11 strains had downregulated fepA::lacZ, this study was undertaken to understand the connection and mechanisms of this downregulation. A large number of Lac+ revertants were obtained from the B32-2483 strain (envz11 and fepA::lacZ) and 7 Lac+ revertants that had reversion mutations not directly correcting the envZ11 allele were further characterized. With P1 phage transduction genetic mapping that involved moving a kanamycin resistance marker linked to fepA::lacZ, two Lac+ revertants were found to have their reversion mutations in the fepA promoter region, while the other five revertants had their mutations mapping outside the fepA region. These two revertants underwent DNA sequencing and found to carry two different single base pair mutations in two different locations of the fepA promoter region. Each one is in the Fur repressor binding region, but one also may have affected the Shine-Dalgarno region involved in translation initiation. All 7 reveratants underwent beta-galactosidase assays to measure fepA::lacZ expression. The two revertants that had mutations in the fepA promoter region had significantly increased fepA activity, with the revertant with the Shine-Dalgarno mutation having the most elevated fepA expression. The other 5 revertants that did not map in the fepA region had fepA expression elevated to the same level as that found in the wild type EnvZ/OmpR background. The data suggest that the negative effect of envZ11 can be overcome by multiple mechanisms, including directly correcting the envZ11 allele or changing the fepA promoter region.
Date Created
2016-05
Agent

Characterization of the structure and interactions of the AcrAB-TolC multi-drug efflux pump in Escherichia coli

Description
The spread of antibiotic resistant bacteria is currently a pressing global health concern, especially considering the prevalence of multi-drug resistance. Efflux pumps, bacterial machinery involved in various active transport functions, are capable of removing a broad range of antibiotics from

The spread of antibiotic resistant bacteria is currently a pressing global health concern, especially considering the prevalence of multi-drug resistance. Efflux pumps, bacterial machinery involved in various active transport functions, are capable of removing a broad range of antibiotics from the periplasmic space and the outer leaflet of the inner membrane, frequently conferring multi-drug resistance. Many aspects of efflux machinery’s structure, functions, and inter-protein interactions are still not fully understood; further characterization of these components of efflux will provide a strong foundation for combating this resistance mechanism. In this project, I further characterize the channel protein TolC as a part of the AcrAB-TolC efflux pump complex in Escherichia coli by first determining the specificity of compensatory mutations in TolC against defective AcrA and AcrB, and then identifying TolC residues that might influence TolC aperture dynamics or stability when altered. Specificity of compensatory mutations was determined using an array of TolC mutants, previously generated from defective AcrA or AcrB, against a different mutant AcrB protein; these new mutant combinations were then analyzed by real-time efflux and antibiotic susceptibility assays. A vancomycin susceptible TolC mutant—a phenotype that has been associated with constitutively open TolC channels—was then used to generate vancomycin-resistant revertants which were evaluated with DNA sequencing, protein quantification by Western blots, and real-time efflux assays to identify residues important for TolC aperture dynamics and protein stability and complex activity. Mutations identified in revertant strains corresponded to residues located in the lower half of the periplasmic domain of TolC; generally, these revertants had poorer efflux than wild-type TolC in the mutant AcrB background, and all revertants had poorer efflux activity than the parental mutant strain.
Date Created
2016-05
Agent

The Development of Small Molecule Inhibitors of the TWEAK-Fn14 Pathway in Glioblastoma Multiforme

134996-Thumbnail Image.png
Description
Glioblastoma multiforme is the most common and aggressive primary malignant brain tumor in adults, exhibiting a median survival of only 15 months after diagnosis. A significant challenge in treating GBM is the ability of glioma cells to invade normal brain

Glioblastoma multiforme is the most common and aggressive primary malignant brain tumor in adults, exhibiting a median survival of only 15 months after diagnosis. A significant challenge in treating GBM is the ability of glioma cells to invade normal brain tissue, escape surgical resection, and resist radiotherapy and chemotherapy. We have previously demonstrated that the TWEAK-Fn14 signaling axis plays an important role in glioma cell invasion and discovered a small molecule, L524-0366, that specifically disrupts the TWEAK-Fn14 interaction. However, low affinity limits L524-0366’s clinical feasibility. By utilizing structure-activity relationship analyses of L524-0366, we identified additional small molecules that may inhibit TWEAK-Fn14 signaling. Here, we identify five additional novel Fn14 signaling inhibitors that specifically inhibited TWEAK-Fn14 NF-κB-dependent signaling and suppressed TWEAK-induced glioma cell migration. Furthermore, we demonstrate that two molecules exhibit improved affinity for Fn14, two molecules showed binding to the TWEAK ligand but not Fn14, and one showed no binding to either TWEAK or Fn14. These molecules will be further tested for in vitro and in vivo functionality, and serve as foundations for additional medicinal chemistry for drug modifications.
Date Created
2016-12
Agent