Low Cost 3D Flow Estimation in Medical Ultrasound

156894-Thumbnail Image.png
Description
Medical ultrasound imaging is widely used today because of it being non-invasive and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases and adds an important dimension to medical ultrasound imaging. Traditionally flow estimation is done using Doppler-based

Medical ultrasound imaging is widely used today because of it being non-invasive and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases and adds an important dimension to medical ultrasound imaging. Traditionally flow estimation is done using Doppler-based methods which only estimate velocity in the beam direction. Thus when blood vessels are close to being orthogonal to the beam direction, there are large errors in the estimation results. In this dissertation, a low cost blood flow estimation method that does not have the angle dependency of Doppler-based methods, is presented.

First, a velocity estimator based on speckle tracking and synthetic lateral phase is proposed for clutter-free blood flow.

Speckle tracking is based on kernel matching and does not have any angle dependency. While velocity estimation in axial dimension is accurate, lateral velocity estimation is challenging due to reduced resolution and lack of phase information. This work presents a two tiered method which estimates the pixel level movement using sum-of-absolute difference, and then estimates the sub-pixel level using synthetic phase information in the lateral dimension. Such a method achieves highly accurate velocity estimation with reduced complexity compared to a cross correlation based method. The average bias of the proposed estimation method is less than 2% for plug flow and less than 7% for parabolic flow.

Blood is always accompanied by clutter which originates from vessel wall and surrounding tissues. As magnitude of the blood signal is usually 40-60 dB lower than magnitude of the clutter signal, clutter filtering is necessary before blood flow estimation. Clutter filters utilize the high magnitude and low frequency features of clutter signal to effectively remove them from the compound (blood + clutter) signal. Instead of low complexity FIR filter or high complexity SVD-based filters, here a power/subspace iteration based method is proposed for clutter filtering. Excellent clutter filtering performance is achieved for both slow and fast moving clutters with lower complexity compared to SVD-based filters. For instance, use of the proposed method results in the bias being less than 8% and standard deviation being less than 12% for fast moving clutter when the beam-to-flow-angle is $90^o$.

Third, a flow rate estimation method based on kernel power weighting is proposed. As the velocity estimator is a kernel-based method, the estimation accuracy degrades near the vessel boundary. In order to account for kernels that are not fully inside the vessel, fractional weights are given to these kernels based on their signal power. The proposed method achieves excellent flow rate estimation results with less than 8% bias for both slow and fast moving clutters.

The performance of the velocity estimator is also evaluated for challenging models. A 2D version of our two-tiered method is able to accurately estimate velocity vectors in a spinning disk as well as in a carotid bifurcation model, both of which are part of the synthetic aperture vector flow imaging (SA-VFI) challenge of 2018. In fact, the proposed method ranked 3rd in the challenge for testing dataset with carotid bifurcation. The flow estimation method is also evaluated for blood flow in vessels with stenosis. Simulation results show that the proposed method is able to estimate the flow rate with less than 9% bias.
Date Created
2018
Agent

Non-Penetrating Microelectrode Interfaces for Cortical Neuroprosthetic Applications with a Focus on Sensory Encoding: Feasibility and Chronic Performance in Striate Cortex

156810-Thumbnail Image.png
Description
Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution

Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution interfaces that can survive the environment and be well tolerated by the nervous system under chronic use. The sensory encoding aspect optimally interfaces at a scale sufficient to evoke perception but focal in nature to maximize resolution and evoke more complex and nuanced sensations. Microelectrode arrays can maintain high spatial density, operating on the scale of cortical columns, and can be either penetrating or non-penetrating. The non-penetrating subset sits on the tissue surface without puncturing the parenchyma and is known to engender minimal tissue response and less damage than the penetrating counterpart, improving long term viability in vivo. Provided non-penetrating microelectrodes can consistently evoke perception and maintain a localized region of activation, non-penetrating micro-electrodes may provide an ideal platform for a high performing neural prosthesis; this dissertation explores their functional capacity.

The scale at which non-penetrating electrode arrays can interface with cortex is evaluated in the context of extracting useful information. Articulate movements were decoded from surface microelectrode electrodes, and additional spatial analysis revealed unique signal content despite dense electrode spacing. With a basis for data extraction established, the focus shifts towards the information encoding half of neural interfaces. Finite element modeling was used to compare tissue recruitment under surface stimulation across electrode scales. Results indicated charge density-based metrics provide a reasonable approximation for current levels required to evoke a visual sensation and showed tissue recruitment increases exponentially with electrode diameter. Micro-scale electrodes (0.1 – 0.3 mm diameter) could sufficiently activate layers II/III in a model tuned to striate cortex while maintaining focal radii of activated tissue.

In vivo testing proceeded in a nonhuman primate model. Stimulation consistently evoked visual percepts at safe current thresholds. Tracking perception thresholds across one year reflected stable values within minimal fluctuation. Modulating waveform parameters was found useful in reducing charge requirements to evoke perception. Pulse frequency and phase asymmetry were each used to reduce thresholds, improve charge efficiency, lower charge per phase – charge density metrics associated with tissue damage. No impairments to photic perception were observed during the course of the study, suggesting limited tissue damage from array implantation or electrically induced neurotoxicity. The subject consistently identified stimulation on closely spaced electrodes (2 mm center-to-center) as separate percepts, indicating sub-visual degree discrete resolution may be feasible with this platform. Although continued testing is necessary, preliminary results supports epicortical microelectrode arrays as a stable platform for interfacing with neural tissue and a viable option for bi-directional BCI applications.
Date Created
2018
Agent

Channel Estimation in Half and Full Duplex Relays

156646-Thumbnail Image.png
Description
Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are

Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are the key components for the implementation and the performance of the FD TWR system, making channel estimation in FD TWRs crucial.

The impact of channel estimation on spectral efficiency in half-duplex multiple-input-multiple-output (MIMO) TWR systems is investigated. The trade-off between training and data energy is proposed. In the case that two sources are symmetric in power and number of antennas, a closed-form for the optimal ratio of data energy to total energy is derived. It can be shown that the achievable rate is a monotonically increasing function of the data length. The asymmetric case is discussed as well.

Efficient and accurate training schemes for FD TWRs are essential for profiting from the inherent spectrally efficient structures of both FD and TWRs. A novel one-block training scheme with a maximum likelihood (ML) estimator is proposed to estimate the channels between the nodes and the residual self-interference (RSI) channel simultaneously. Baseline training schemes are also considered to compare with the one-block scheme. The Cramer-Rao bounds (CRBs) of the training schemes are derived and analyzed by using the asymptotic properties of Toeplitz matrices. The benefit of estimating the RSI channel is shown analytically in terms of Fisher information.

To obtain fundamental and analytic results of how the RSI affects the spectral efficiency, one-way FD relay systems are studied. Optimal training design and ML channel estimation are proposed to estimate the RSI channel. The CRBs are derived and analyzed in closed-form so that the optimal training sequence can be found via minimizing the CRB. Extensions of the training scheme to frequency-selective channels and multiple relays are also presented.

Simultaneously sensing and transmission in an FD cognitive radio system with MIMO is considered. The trade-off between the transmission rate and the detection accuracy is characterized by the sum-rate of the primary and the secondary users. Different beamforming and combining schemes are proposed and compared.
Date Created
2018
Agent

Localized Application for Video Capture for a Multimedia Sensor Node with Name-Based Segment Streaming

156504-Thumbnail Image.png
Description
The Internet of Things (IoT) has become a more pervasive part of everyday life. IoT networks such as wireless sensor networks, depend greatly on the limiting unnecessary power consumption. As such, providing low-power, adaptable software can greatly improve network design.

The Internet of Things (IoT) has become a more pervasive part of everyday life. IoT networks such as wireless sensor networks, depend greatly on the limiting unnecessary power consumption. As such, providing low-power, adaptable software can greatly improve network design. For streaming live video content, Wireless Video Sensor Network Platform compatible Dynamic Adaptive Streaming over HTTP (WVSNP-DASH) aims to revolutionize wireless segmented video streaming by providing a low-power, adaptable framework to compete with modern DASH players such as Moving Picture Experts Group (MPEG-DASH) and Apple’s Hypertext Transfer Protocol (HTTP) Live Streaming (HLS). Each segment is independently playable, and does not depend on a manifest file, resulting in greatly improved power performance. My work was to show that WVSNP-DASH is capable of further power savings at the level of the wireless sensor node itself if a native capture program is implemented at the camera sensor node. I created a native capture program in the C language that fulfills the name-based segmentation requirements of WVSNP-DASH. I present this program with intent to measure its power consumption on a hardware test-bed in future. To my knowledge, this is the first program to generate WVSNP-DASH playable video segments. The results show that our program could be utilized by WVSNP-DASH, but there are issues with the efficiency, so provided are an additional outline for further improvements.
Date Created
2018
Agent

An Analysis of the Unmanned Aerial Systems-to-Ground Channel and Joint Sensing and Communications Systems Using Software Defined Radio

156306-Thumbnail Image.png
Description
Software-defined radio provides users with a low-cost and flexible platform for implementing and studying advanced communications and remote sensing applications. Two such applications include unmanned aerial system-to-ground communications channel and joint sensing and communication systems. In this work, these applications

Software-defined radio provides users with a low-cost and flexible platform for implementing and studying advanced communications and remote sensing applications. Two such applications include unmanned aerial system-to-ground communications channel and joint sensing and communication systems. In this work, these applications are studied.

In the first part, unmanned aerial system-to-ground communications channel models are derived from empirical data collected from software-defined radio transceivers in residential and mountainous desert environments using a small (< 20 kg) unmanned aerial system during low-altitude flight (< 130 m). The Kullback-Leibler divergence measure was employed to characterize model mismatch from the empirical data. Using this measure the derived models accurately describe the underlying data.

In the second part, an experimental joint sensing and communications system is implemented using a network of software-defined radio transceivers. A novel co-design receiver architecture is presented and demonstrated within a three-node joint multiple access system topology consisting of an independent radar and communications transmitter along with a joint radar and communications receiver. The receiver tracks an emulated target moving along a predefined path and simultaneously decodes a communications message. Experimental system performance bounds are characterized jointly using the communications channel capacity and novel estimation information rate.
Date Created
2018
Agent

Deep Active Learning Explored Across Diverse Label Spaces

156219-Thumbnail Image.png
Description
Deep learning architectures have been widely explored in computer vision and have

depicted commendable performance in a variety of applications. A fundamental challenge

in training deep networks is the requirement of large amounts of labeled training

data. While gathering large quantities of unlabeled

Deep learning architectures have been widely explored in computer vision and have

depicted commendable performance in a variety of applications. A fundamental challenge

in training deep networks is the requirement of large amounts of labeled training

data. While gathering large quantities of unlabeled data is cheap and easy, annotating

the data is an expensive process in terms of time, labor and human expertise.

Thus, developing algorithms that minimize the human effort in training deep models

is of immense practical importance. Active learning algorithms automatically identify

salient and exemplar samples from large amounts of unlabeled data and can augment

maximal information to supervised learning models, thereby reducing the human annotation

effort in training machine learning models. The goal of this dissertation is to

fuse ideas from deep learning and active learning and design novel deep active learning

algorithms. The proposed learning methodologies explore diverse label spaces to

solve different computer vision applications. Three major contributions have emerged

from this work; (i) a deep active framework for multi-class image classication, (ii)

a deep active model with and without label correlation for multi-label image classi-

cation and (iii) a deep active paradigm for regression. Extensive empirical studies

on a variety of multi-class, multi-label and regression vision datasets corroborate the

potential of the proposed methods for real-world applications. Additional contributions

include: (i) a multimodal emotion database consisting of recordings of facial

expressions, body gestures, vocal expressions and physiological signals of actors enacting

various emotions, (ii) four multimodal deep belief network models and (iii)

an in-depth analysis of the effect of transfer of multimodal emotion features between

source and target networks on classification accuracy and training time. These related

contributions help comprehend the challenges involved in training deep learning

models and motivate the main goal of this dissertation.
Date Created
2018
Agent

Dynamic Spectrum Sharing in Cognitive Radio and Device-to-Device Systems

156085-Thumbnail Image.png
Description
Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic spectrum access schemes in wireless communication systems to provide improved quality-of-service, and efficient spectrum utilization. This dissertation shows that both CR and D2D systems benefit from properly designed cooperation

Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic spectrum access schemes in wireless communication systems to provide improved quality-of-service, and efficient spectrum utilization. This dissertation shows that both CR and D2D systems benefit from properly designed cooperation scheme.

In underlay CR systems, where secondary users (SUs) transmit simultaneously with primary users (PUs), reliable communication is by all means guaranteed for PUs, which likely deteriorates SUs’ performance. To overcome this issue, cooperation exclusively among SUs is achieved through multi-user diversity (MUD), where each SU is subject to an instantaneous interference constraint at the primary receiver. Therefore, the active number of SUs satisfying this constraint is random. Under different user distributions with the same mean number of SUs, the stochastic ordering of SU performance metrics including bit error rate (BER), outage probability, and ergodic capacity are made possible even without observing closed form expressions. Furthermore, a cooperation is assumed between primary and secondary networks, where those SUs exceeding the interference constraint facilitate PU’s transmission by relaying its signal. A fundamental performance trade-off between primary and secondary networks is observed, and it is illustrated that the proposed scheme outperforms non-cooperative underlay CR systems in the sense of system overall BER and sum achievable rate.

Similar to conventional cellular networks, CR systems suffer from an overloaded receiver having to manage signals from a large number of users. To address this issue, D2D communications has been proposed, where direct transmission links are established between users in close proximity to offload the system traffic. Several new cooperative spectrum access policies are proposed allowing coexistence of multiple D2D pairs in order to improve the spectral efficiency. Despite the additional interference, it is shown that both the cellular user’s (CU) and the individual D2D user's achievable rates can be improved simultaneously when the number of D2D pairs is below a certain threshold, resulting in a significant multiplexing gain in the sense of D2D sum rate. This threshold is quantified for different policies using second order approximations for the average achievable rates for both the CU and the individual D2D user.
Date Created
2017
Agent

Perturbation Robust Representations of Topological Persistence Diagrams

156036-Thumbnail Image.png
Description
Topological methods for data analysis present opportunities for enforcing certain invariances of broad interest in computer vision: including view-point in activity analysis, articulation in shape analysis, and measurement invariance in non-linear dynamical modeling. The increasing success of these methods is

Topological methods for data analysis present opportunities for enforcing certain invariances of broad interest in computer vision: including view-point in activity analysis, articulation in shape analysis, and measurement invariance in non-linear dynamical modeling. The increasing success of these methods is attributed to the complementary information that topology provides, as well as availability of tools for computing topological summaries such as persistence diagrams. However, persistence diagrams are multi-sets of points and hence it is not straightforward to fuse them with features used for contemporary machine learning tools like deep-nets. In this paper theoretically well-grounded approaches to develop novel perturbation robust topological representations are presented, with the long-term view of making them amenable to fusion with contemporary learning architectures. The proposed representation lives on a Grassmann manifold and hence can be efficiently used in machine learning pipelines.

The proposed representation.The efficacy of the proposed descriptor was explored on three applications: view-invariant activity analysis, 3D shape analysis, and non-linear dynamical modeling. Favorable results in both high-level recognition performance and improved performance in reduction of time-complexity when compared to other baseline methods are obtained.
Date Created
2017
Agent

Electric Field Sensing

137494-Thumbnail Image.png
Description
This project examines the science of electric field sensing and completes experiments, gathering data to support its utility for various applications. The basic system consists of a transmitter, receiver, and lock-in amplifier. The primary goal of the study was to

This project examines the science of electric field sensing and completes experiments, gathering data to support its utility for various applications. The basic system consists of a transmitter, receiver, and lock-in amplifier. The primary goal of the study was to determine if such a system could detect a human disturbance, due to the capacitance of a human body, and such a thesis was supported. Much different results were obtained when a person disturbed the electric field transmitted by the system than when other types of objects, such as chairs and electronic devices, were placed in the field. In fact, there was a distinct difference between persons of varied sizes as well. This thesis goes through the basic design of the system and the process of experimental design for determining the capabilities of such an electric field sensing system.
Date Created
2013-05
Agent

Developing a Flexible Electric and Magnetic Field Imaging Blanket

136341-Thumbnail Image.png
Description
Recently, electric and magnetic field sensing has come of interest to the military for a variety of applications, including imaging circuitry and detecting explosive devices. This thesis describes research at the ASU's Flexible Electronics and Display Center (FEDC) towards the

Recently, electric and magnetic field sensing has come of interest to the military for a variety of applications, including imaging circuitry and detecting explosive devices. This thesis describes research at the ASU's Flexible Electronics and Display Center (FEDC) towards the development of a flexible electric and magnetic field imaging blanket. D-dot sensors, which detect changes in electric flux, were chosen for electric field sensing, and a single D-dot sensor in combination with a lock-in amplifier was used to detect individuals passing through an oscillating electric field. This was then developed into a 1 x 16 array of D-dot sensors used to image the field generated by two parallel wires. After the fabrication of a two-dimensional array, it was discovered that commercial field effect transistors did not have a high enough off-resistance to isolate the sensor form the column line. Three alternative solutions were proposed. The first was a one-dimensional array combined with a mechanical stepper to move the array across the E-field pattern. The second was a 1 x 16 strip detector combined with the techniques of computed tomography to reconstruct the image of the field. Such techniques include filtered back projection and algebraic iterative reconstruction (AIR). Lastly, an array of D-dot sensors was fabricated on a flexible substrate, enabled by the high off-resistance of the thin film transistors produced by the FEDC. The research on magnetic field imaging began with a feasibility study of three different types of magnetic field sensors: planar spiral inductors, Hall effect sensors, and giant magnetoresistance (GMR). An experimental array of these sensors was designed and fabricated, and the sensors were used to image the fringe fields of a Helmholtz coil. Furthermore, combining the inductors with the other two types of sensors resulted in three-dimensional sensors. From these measurements, it was determined that planar spiral inductors and Hall effect sensors are best suited for future imaging arrays.
Date Created
2015-05
Agent