Effects of Trigeminal Nerve Stimulation on Visuomotor Learning

189324-Thumbnail Image.png
Description
A current thrust in neurorehabilitation research involves exogenous neuromodulation of peripheral nerves to enhance neuroplasticity and maximize recovery of function. This dissertation presents the results of four experiments aimed at assessing the effects of trigeminal nerve stimulation (TNS) and occipital

A current thrust in neurorehabilitation research involves exogenous neuromodulation of peripheral nerves to enhance neuroplasticity and maximize recovery of function. This dissertation presents the results of four experiments aimed at assessing the effects of trigeminal nerve stimulation (TNS) and occipital nerve stimulation (ONS) on motor learning, which was behaviorally characterized using an upper extremity visuomotor adaptation paradigm. In Aim 1a, the effects of offline TNS using clinically tested frequencies (120 and 60 Hz) were characterized. Sixty-three participants (22.75±4.6 y/o), performed a visuomotor rotation task and received TNS before encountering rotation of hand visual feedback. In Aim 1b, TNS at 3 kHz, which has been shown to be more tolerable at higher current intensities, was evaluated in 42 additional subjects (23.4±4.6 y/o). Results indicated that 3 kHz stimulation accelerated learning while 60 Hz stimulation slowed learning, suggesting a frequency-dependent effect on learning. In Aim 2, the effect of online TNS using 120 and 60 Hz were characterized to determine if this protocol would deliver better outcomes. Sixty-three participants (23.2±3.9 y/o) received either TNS or sham concurrently with perturbed visual feedback. Results showed no significant differences among groups. However, a cross-study comparison of results obtained with 60 Hz offline TNS showed a statistically significant improvement in learning rates with online stimulation relative to offline, suggesting a timing-dependent effect on learning. In Aim 3, TNS and ONS were compared using the best protocol from previous aims (offline 3 kHz). Additionally, concurrent stimulation of both nerves was explored to look for potential synergistic effects. Eighty-four participants (22.9±3.2 y/o) were assigned to one of four groups: TNS, ONS, TNS+ONS, and sham. Visual inspection of learning curves revealed that the ONS group demonstrated the fastest learning among groups. However, statistical analyses did not confirm this observation. In addition, the TNS+ONS group appeared to learn faster than the sham and TNS groups but slower than the ONS only group, suggesting no synergistic effects using this protocol, as initially hypothesized. The results provide new information on the potential use of TNS and ONS in neurorehabilitation and performance enhancement in the motor domain.
Date Created
2023
Agent

Effects of L4-L5 Posterior Fusion on Stress Distribution: Improved Predictions Using a Uniquely Validated Finite Element Model

187363-Thumbnail Image.png
Description
Finite element models (FEMs) of spine segments validated in their intact states are often used to make predictions following structural modifications simulating surgical procedures, including posterior fusion with pedicle screws and rods (PSR) and laminectomy (removal of posterior column bone

Finite element models (FEMs) of spine segments validated in their intact states are often used to make predictions following structural modifications simulating surgical procedures, including posterior fusion with pedicle screws and rods (PSR) and laminectomy (removal of posterior column bone to decompress the spinal cord). The gold standard for spine FEM validation compares predicted vs. experimental intervertebral ranges of motion (ROM). Given that muscle co-contraction compresses the spine, validation that considers compression may produce a more robust FEM. One research goal was to evaluate an experimental method of compressing a lumbar spine segment through its sagittal plane balance (pivot) point (BP) using a 6DOF robotic test system. Experimental data supported the hypothesis that structural modifications, such as PSR and laminectomy alter the segment’s BP location and its compressive stiffness. However, evaluation showed that the experimental BP method is sensitive to specimen posture in the robotic test frame; slight flexion or extension produced shear loads during compression that affect BP location and should be included in specimen-specific FEMs to ensure similar load conditions. Another goal was to develop a uniquely calibrated specimen-specific FEM of an intact L4-5 motion segment using the experimental BP data. A specimen-specific FEM was created and calibrated using experimental BP compressive stiffness data, however matching experimental BP location data was unsuccessful. The BP-compression calibrated FEM was evaluated by comparing predicted responses to loads following simulated PSR and laminectomy to specimen-specific experimental data. Predictions using the BP-calibrated and ROM-calibrated FEMs were compared. The BP-calibration process helped identify an unrealistic FEM disc geometry (nucleus pulposus size and location). Both BP-compression and ROM-calibrated FEMs predicted effects of PSR on stiffness (compressive and flexural) that were greater than experimental, which helped identify a problem with simplified representations of bone in the posterior column and at the anterior column interface. The BP-compression calibrated FEMs predicted relative shifts in BP locations and bone surface strains during compression that were closer to experimental data than similarly modified ROM-calibrated FEMs. Collectively, these results support the use of BP measures in experimental and model-based investigations of surgical modifications of the spine.
Date Created
2023
Agent

Simulation, Design, and Application of Micro-Lens Enhanced Multi-Emission Optical Nerve Cuff for Peripheral Nerve Stimulation

168447-Thumbnail Image.png
Description
For two centuries, electrical stimulation has been the conventional method for interfacing with the nervous system. As interfaces with the peripheral nervous system become more refined and higher-resolution, several challenges appear, including immune responses to invasive electrode application, large-to-small axon

For two centuries, electrical stimulation has been the conventional method for interfacing with the nervous system. As interfaces with the peripheral nervous system become more refined and higher-resolution, several challenges appear, including immune responses to invasive electrode application, large-to-small axon recruitment order, and electrode size-dependent spatial selectivity. Optogenetics offers a solution that is less invasive, more tissue-selective, and has small-to-large axon recruitment order. By adding genes to express photosensitive proteins optogenetics provides neuroscientists the ability to genetically select cell populations to stimulate with simple illumination. However, optogenetic stimulation of peripheral nerves uses diffuse light to activate the photosensitive neural cell lines. To increase the specificity of stimulus response, research was conducted to test the hypothesis that multiple, focused light emissions placed around the circumference of optogenetic mouse sciatic nerve could be driven to produce differential responses in hindlimb motor movement depending on the pattern of light presented. A Monte Carlo computer simulation was created to model the number of emitters, the light emission size, and the focal power of accompanying micro-lenses to provide targeted stimulation to select regions within the sciatic nerve. The computer simulation results were used to parameterize the design of micro-lenses. By modeling multiple focused beams, only fascicles within a nerve diameter less than 1 mm are expected to be fully accessible to focused optical stimulation; a minimum of 4 light sources is required to generate a photon intensity at a point in a nerve over the initial contact along its surface. To elicit the same effect in larger nerves, focusing lenses would require a numerical aperture > 1. Microlenses which met the simulation requirements were fabricated and deployed on a flexible nerve cuff which was used to stimulate the sciatic nerve in optogenetic mice. Motor neuron responses from this stimulation were compared to global illumination; stimulation using the optical cuff resulted in fine motor movement of the extensor muscles of the digits in the hindlimb. Increasing optical power resulted in a shift to gross motor movement of hindlimb. Finally, varying illumination intensity across the cuff showed changes in the extension of individual digits.
Date Created
2021
Agent

A Starting Guide to Capturing Visual & Kinesthetic Information from Virtual-Reality Technology

166072-Thumbnail Image.png
Description

Following a study conducted in 1991 supporting that kinesthetic information affects visual processing information when moving an arm in extrapersonal space, this research aims to suggest utilizing virtual-reality (VR) technology will lead to more accurate and faster data acquisition (Helms

Following a study conducted in 1991 supporting that kinesthetic information affects visual processing information when moving an arm in extrapersonal space, this research aims to suggest utilizing virtual-reality (VR) technology will lead to more accurate and faster data acquisition (Helms Tillery, et al.) [1]. The previous methods for conducting such research used ultrasonic systems of ultrasound emitters and microphones to track distance from the speed of sound. This method made the experimentation process long and spatial data difficult to synthesize. The purpose of this paper is to show the progress I have made in the efforts to capture spatial data using VR technology to enhance the previous research that has been done in the field of neuroscience. The experimental setup was completed using the Oculus Quest 2 VR headset and included hand controllers. The experiment simulation was created using Unity game engine to build a 3D VR world which can be used interactively with the Oculus. The result of this simulation allows the user to interact with a ball in the VR environment without seeing the body of the user. The VR simulation is able to be used in combination with real-time motion capture cameras to capture live spatial data of the user during trials, though spatial data from the VR environment has not been able to be collected.

Date Created
2022-05
Agent

Evaluation of Prosthetic Device Selection

164461-Thumbnail Image.png
Description

Patients need to know current and available options for prosthetic devices. Devices are categorized depending on the region of amputation and their purpose. Retrospection on the history of prosthetic devices leading into modern ones allows for an interpretation of successes

Patients need to know current and available options for prosthetic devices. Devices are categorized depending on the region of amputation and their purpose. Retrospection on the history of prosthetic devices leading into modern ones allows for an interpretation of successes and necessary improvements moving forward. One promising avenue for prostheses is the development of neuroprostheses that much more closely resemble some of the functionality taken for granted in natural limbs. Proprioception, more commonly known as the ‘sixth sense’, would be a very desirable characteristic of these devices and is the subject of current research efforts. In the meantime, it is necessary to help patients evaluate what products are out there that identify more strongly with their individualized preferences.

Date Created
2022-05
Agent

Effects of Trigeminal Nerve Stimulation on the ANS and Proprioception: High Frequency TNS Reduces Proprioceptive End-point Error

157696-Thumbnail Image.png
Description
Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus

Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus and attention during upper limb proprioceptive tasks results in a decrease of proprioceptive error magnitudes and greater endpoint accuracy. Increased focus and attention can also be correlated to neurophysiological activity in the Locus Coeruleus (LC) during a variety of mental tasks. Through non-invasive trigeminal nerve stimulation, it may be possible to affect the activity of the LC and induce improvements in arousal and attention that would assist in proprioceptive estimation. The trigeminal nerve projects to the LC through the mesencephalic nucleus of the trigeminal complex, providing a pathway similar to the effects seen from vagus nerve stimulation. In this experiment, the effect of trigeminal nerve stimulation (TNS) on proprioceptive ability is evaluated by the proprioceptive estimation error magnitude and direction, while LC activation via autonomic pathways is indirectly measured using pupil diameter, pupil recovery time, and pupil velocity. TNS decreases proprioceptive error magnitude in 59% of subjects, while having no measurable impact on proprioceptive strategy. Autonomic nervous system changes were observed in 88% of subjects, with mostly parasympathetic activation and a mixed sympathetic effect.
Date Created
2019
Agent

Upper limb proprioceptive sensitivity in three-dimensional space: effects of direction, posture, and exogenous neuromodulation

156964-Thumbnail Image.png
Description
Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown

Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane however, few studies have looked at proprioceptive sensitivity in 3d space. In addition, the extent to which proprioceptive sensitivity is modifiable by factors such as exogenous neuromodulation is unclear. To investigate proprioceptive sensitivity in 3d we developed a novel experimental paradigm employing a 7-DoF robot arm, which enables reliable testing of arm proprioception along arbitrary paths in 3d space, including vertical motion which has previously been neglected. A participant’s right arm was coupled to a trough held by the robot that stabilized the wrist and forearm, allowing for changes in configuration only at the elbow and shoulder. Sensitivity to imposed displacements of the endpoint of the arm were evaluated using a “same/different” task, where participant’s hands were moved 1-4 cm from a previously visited reference position. A measure of sensitivity (d’) was compared across 6 movement directions and between 2 postures. For all directions, sensitivity increased monotonically as the distance from the reference location increased. Sensitivity was also shown to be anisotropic (directionally dependent) which has implications for our understanding of the planning and control of reaching movements in 3d space.

The effect of neuromodulation on proprioceptive sensitivity was assessed using transcutaneous electrical nerve stimulation (TENS), which has been shown to have beneficial effects on human cognitive and sensorimotor performance in other contexts. In this pilot study the effects of two frequencies (30hz and 300hz) and three electrode configurations were examined. No effect of electrode configuration was found, however sensitivity with 30hz stimulation was significantly lower than with 300hz stimulation (which was similar to sensitivity without stimulation). Although TENS was shown to modulate proprioceptive sensitivity, additional experiments are required to determine if TENS can produce enhancement rather than depression of sensitivity which would have positive implications for rehabilitation of proprioceptive deficits arising from stroke and other disorders.
Date Created
2018
Agent

Non-Penetrating Microelectrode Interfaces for Cortical Neuroprosthetic Applications with a Focus on Sensory Encoding: Feasibility and Chronic Performance in Striate Cortex

156810-Thumbnail Image.png
Description
Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution

Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution interfaces that can survive the environment and be well tolerated by the nervous system under chronic use. The sensory encoding aspect optimally interfaces at a scale sufficient to evoke perception but focal in nature to maximize resolution and evoke more complex and nuanced sensations. Microelectrode arrays can maintain high spatial density, operating on the scale of cortical columns, and can be either penetrating or non-penetrating. The non-penetrating subset sits on the tissue surface without puncturing the parenchyma and is known to engender minimal tissue response and less damage than the penetrating counterpart, improving long term viability in vivo. Provided non-penetrating microelectrodes can consistently evoke perception and maintain a localized region of activation, non-penetrating micro-electrodes may provide an ideal platform for a high performing neural prosthesis; this dissertation explores their functional capacity.

The scale at which non-penetrating electrode arrays can interface with cortex is evaluated in the context of extracting useful information. Articulate movements were decoded from surface microelectrode electrodes, and additional spatial analysis revealed unique signal content despite dense electrode spacing. With a basis for data extraction established, the focus shifts towards the information encoding half of neural interfaces. Finite element modeling was used to compare tissue recruitment under surface stimulation across electrode scales. Results indicated charge density-based metrics provide a reasonable approximation for current levels required to evoke a visual sensation and showed tissue recruitment increases exponentially with electrode diameter. Micro-scale electrodes (0.1 – 0.3 mm diameter) could sufficiently activate layers II/III in a model tuned to striate cortex while maintaining focal radii of activated tissue.

In vivo testing proceeded in a nonhuman primate model. Stimulation consistently evoked visual percepts at safe current thresholds. Tracking perception thresholds across one year reflected stable values within minimal fluctuation. Modulating waveform parameters was found useful in reducing charge requirements to evoke perception. Pulse frequency and phase asymmetry were each used to reduce thresholds, improve charge efficiency, lower charge per phase – charge density metrics associated with tissue damage. No impairments to photic perception were observed during the course of the study, suggesting limited tissue damage from array implantation or electrically induced neurotoxicity. The subject consistently identified stimulation on closely spaced electrodes (2 mm center-to-center) as separate percepts, indicating sub-visual degree discrete resolution may be feasible with this platform. Although continued testing is necessary, preliminary results supports epicortical microelectrode arrays as a stable platform for interfacing with neural tissue and a viable option for bi-directional BCI applications.
Date Created
2018
Agent

Neural mechanisms of sensory integration: frequency domain analysis of spike and field potential activity during arm position maintenance with and without visual feedback

156093-Thumbnail Image.png
Description
Understanding where our bodies are in space is imperative for motor control, particularly for actions such as goal-directed reaching. Multisensory integration is crucial for reducing uncertainty in arm position estimates. This dissertation examines time and frequency-domain correlates of

Understanding where our bodies are in space is imperative for motor control, particularly for actions such as goal-directed reaching. Multisensory integration is crucial for reducing uncertainty in arm position estimates. This dissertation examines time and frequency-domain correlates of visual-proprioceptive integration during an arm-position maintenance task. Neural recordings were obtained from two different cortical areas as non-human primates performed a center-out reaching task in a virtual reality environment. Following a reach, animals maintained the end-point position of their arm under unimodal (proprioception only) and bimodal (proprioception and vision) conditions. In both areas, time domain and multi-taper spectral analysis methods were used to quantify changes in the spiking, local field potential (LFP), and spike-field coherence during arm-position maintenance.

In both areas, individual neurons were classified based on the spectrum of their spiking patterns. A large proportion of cells in the SPL that exhibited sensory condition-specific oscillatory spiking in the beta (13-30Hz) frequency band. Cells in the IPL typically had a more diverse mix of oscillatory and refractory spiking patterns during the task in response to changing sensory condition. Contrary to the assumptions made in many modelling studies, none of the cells exhibited Poisson-spiking statistics in SPL or IPL.

Evoked LFPs in both areas exhibited greater effects of target location than visual condition, though the evoked responses in the preferred reach direction were generally suppressed in the bimodal condition relative to the unimodal condition. Significant effects of target location on evoked responses were observed during the movement period of the task well.

In the frequency domain, LFP power in both cortical areas was enhanced in the beta band during the position estimation epoch of the task, indicating that LFP beta oscillations may be important for maintaining the ongoing state. This was particularly evident at the population level, with clear increase in alpha and beta power. Differences in spectral power between conditions also became apparent at the population level, with power during bimodal trials being suppressed relative to unimodal. The spike-field coherence showed confounding results in both the SPL and IPL, with no clear correlation between incidence of beta oscillations and significant beta coherence.
Date Created
2017
Agent

Haptic discrimination of object size using vibratory sensory substitution

154617-Thumbnail Image.png
Description
Humans constantly rely on a complex interaction of a variety of sensory modalities in order to complete even the simplest of daily tasks. For reaching and grasping to interact with objects, the visual, tactile, and proprioceptive senses provide the majority

Humans constantly rely on a complex interaction of a variety of sensory modalities in order to complete even the simplest of daily tasks. For reaching and grasping to interact with objects, the visual, tactile, and proprioceptive senses provide the majority of the information used. While vision is often relied on for many tasks, most people are able to accomplish common daily rituals without constant visual attention, instead relying mainly on tactile and proprioceptive cues. However, amputees using prosthetic arms do not have access to these cues, making tasks impossible without vision. Even tasks with vision can be incredibly difficult as prosthesis users are unable to modify grip force using touch, and thus tend to grip objects excessively hard to make sure they don’t slip.

Methods such as vibratory sensory substitution have shown promise for providing prosthesis users with a sense of contact and have proved helpful in completing motor tasks. In this thesis, two experiments were conducted to determine whether vibratory cues could be useful in discriminating between sizes. In the first experiment, subjects were asked to grasp a series of hidden virtual blocks of varying sizes with vibrations on the fingertips as indication of contact and compare the size of consecutive boxes. Vibratory haptic feedback significantly increased the accuracy of size discrimination over objects with only visual indication of contact, though accuracy was not as great as for typical grasping tasks with physical blocks. In the second, subjects were asked to adjust their virtual finger position around a series of virtual boxes with vibratory feedback on the fingertips using either finger movement or EMG. It was found that EMG control allowed for significantly less accuracy in size discrimination, implying that, while proprioceptive feedback alone is not enough to determine size, direct kinesthetic information about finger position is still needed.
Date Created
2016
Agent