Perturbation Robust Representations of Topological Persistence Diagrams

156036-Thumbnail Image.png
Description
Topological methods for data analysis present opportunities for enforcing certain invariances of broad interest in computer vision: including view-point in activity analysis, articulation in shape analysis, and measurement invariance in non-linear dynamical modeling. The increasing success of these methods is

Topological methods for data analysis present opportunities for enforcing certain invariances of broad interest in computer vision: including view-point in activity analysis, articulation in shape analysis, and measurement invariance in non-linear dynamical modeling. The increasing success of these methods is attributed to the complementary information that topology provides, as well as availability of tools for computing topological summaries such as persistence diagrams. However, persistence diagrams are multi-sets of points and hence it is not straightforward to fuse them with features used for contemporary machine learning tools like deep-nets. In this paper theoretically well-grounded approaches to develop novel perturbation robust topological representations are presented, with the long-term view of making them amenable to fusion with contemporary learning architectures. The proposed representation lives on a Grassmann manifold and hence can be efficiently used in machine learning pipelines.

The proposed representation.The efficacy of the proposed descriptor was explored on three applications: view-invariant activity analysis, 3D shape analysis, and non-linear dynamical modeling. Favorable results in both high-level recognition performance and improved performance in reduction of time-complexity when compared to other baseline methods are obtained.
Date Created
2017
Agent

Measuring Glide Reflection Symmetry in Human Movements

155748-Thumbnail Image.png
Description
Many studies on human walking pattern assume that adult gait is characterized by bilateral symmetrical behavior. It is well understood that maintaining symmetry in walking patterns increases energetic eciency. We present a framework to provide a quantitative assessment of human

Many studies on human walking pattern assume that adult gait is characterized by bilateral symmetrical behavior. It is well understood that maintaining symmetry in walking patterns increases energetic eciency. We present a framework to provide a quantitative assessment of human walking patterns, especially assessments related to symmetric and asymmetric gait patterns purely based on glide reflection. A Gliding symmetry score is calculated from the data obtained from Motion Capture(MoCap) system. Six primary joints (Shoulder, Elbow, Palm, Hip, Knee, Foot) are considered for this study. Two dierent abnormalities were chosen and studied carefully. All the two gaits were mimicked in controlled environment. The framework proposed clearly showed that it could distinguish the abnormal gaits from the ordinary walking patterns. This framework can be widely used by the doctors and physical therapists for kinematics analysis, bio-mechanics, motion capture research, sports medicine and physical therapy, including human gait analysis and injury rehabilitation.
Date Created
2017
Agent