156504-Thumbnail Image.png
Description
The Internet of Things (IoT) has become a more pervasive part of everyday life. IoT networks such as wireless sensor networks, depend greatly on the limiting unnecessary power consumption. As such, providing low-power, adaptable software can greatly improve network design.

The Internet of Things (IoT) has become a more pervasive part of everyday life. IoT networks such as wireless sensor networks, depend greatly on the limiting unnecessary power consumption. As such, providing low-power, adaptable software can greatly improve network design. For streaming live video content, Wireless Video Sensor Network Platform compatible Dynamic Adaptive Streaming over HTTP (WVSNP-DASH) aims to revolutionize wireless segmented video streaming by providing a low-power, adaptable framework to compete with modern DASH players such as Moving Picture Experts Group (MPEG-DASH) and Apple’s Hypertext Transfer Protocol (HTTP) Live Streaming (HLS). Each segment is independently playable, and does not depend on a manifest file, resulting in greatly improved power performance. My work was to show that WVSNP-DASH is capable of further power savings at the level of the wireless sensor node itself if a native capture program is implemented at the camera sensor node. I created a native capture program in the C language that fulfills the name-based segmentation requirements of WVSNP-DASH. I present this program with intent to measure its power consumption on a hardware test-bed in future. To my knowledge, this is the first program to generate WVSNP-DASH playable video segments. The results show that our program could be utilized by WVSNP-DASH, but there are issues with the efficiency, so provided are an additional outline for further improvements.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Localized Application for Video Capture for a Multimedia Sensor Node with Name-Based Segment Streaming
    Contributors
    Date Created
    2018
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Computer Engineering 2018

    Machine-readable links