RADAR-Based Non-Stationary and Stationary Human Presence Detection

193417-Thumbnail Image.png
Description
Humanpresence detection is essential for a various number of applications including defense and healthcare. Accurate measurements of distances, relative velocities of humans, and other objects can be made with radars. They are largely impervious to external factors like the impact

Humanpresence detection is essential for a various number of applications including defense and healthcare. Accurate measurements of distances, relative velocities of humans, and other objects can be made with radars. They are largely impervious to external factors like the impact of smoke, dust, or rain. They are also capable of working in varied intensity of light in indoor environments. This report explores the analyzing of real data captured and the application of different detection algorithms. Adaptive thresholding suppresses stationary backgrounds while maintaining detection thresholds to keep false alarm rates low. Using different approaches of Constant False Alarm Rate (CFAR) namely Cell averaging, Smallest of Cell averaging,Greatest of Cell Averaging and Order Statistic, this report aims to show its performance in detecting humans in an indoor environment using real time data collected. The objective of this project is to explain the signal processing chain of presence detection using a small scale RADAR
Date Created
2024
Agent

Nonlinear Synchrosqueezing for Dispersive Signal Analysis

190959-Thumbnail Image.png
Description
The propagation of waves in solids, especially when characterized by dispersion, remains a topic of profound interest in the field of signal processing. Dispersion represents a phenomenon where wave speed becomes a function of frequency and results in multiple oscillatory

The propagation of waves in solids, especially when characterized by dispersion, remains a topic of profound interest in the field of signal processing. Dispersion represents a phenomenon where wave speed becomes a function of frequency and results in multiple oscillatory modes. Such signals find application in structural healthmonitoring for identifying potential damage sensitive features in complex materials. Consequently, it becomes important to find matched time-frequency representations for characterizing the properties of the multiple frequency-dependent modes of propagation in dispersive material. Various time-frequency representations have been used for dispersive signal analysis. However, some of them suffered from poor timefrequency localization or were designed to match only specific dispersion modes with known characteristics, or could not reconstruct individual dispersive modes. This thesis proposes a new time-frequency representation, the nonlinear synchrosqueezing transform (NSST) that is designed to offer high localization to signals with nonlinear time-frequency group delay signatures. The NSST follows the technique used by reassignment and synchrosqueezing methods to reassign time-frequency points of the short-time Fourier transform and wavelet transform to specific localized regions in the time-frequency plane. As the NSST is designed to match signals with third order polynomial phase functions in the frequency domain, we derive matched group delay estimators for the time-frequency point reassignment. This leads to a highly localized representation for nonlinear time-frequency characteristics that also allow for the reconstruction of individual dispersive modes from multicomponent signals. For the reconstruction process, we propose a novel unsupervised learning approach that does not require prior information on the variation or number of modes in the signal. We also propose a Bayesian group delay mode merging approach for reconstructing modes that overlap in time and frequency. In addition to using simulated signals, we demonstrate the performance of the new NSST, together with mode extraction, using real experimental data of ultrasonic guided waves propagating through a composite plate.
Date Created
2023
Agent

Bayesian Inference and Information Learning for Switching Nonlinear Gene Regulatory Networks

190903-Thumbnail Image.png
Description
This dissertation centers on the development of Bayesian methods for learning differ- ent types of variation in switching nonlinear gene regulatory networks (GRNs). A new nonlinear and dynamic multivariate GRN model is introduced to account for different sources of variability

This dissertation centers on the development of Bayesian methods for learning differ- ent types of variation in switching nonlinear gene regulatory networks (GRNs). A new nonlinear and dynamic multivariate GRN model is introduced to account for different sources of variability in GRNs. The new model is aimed at more precisely capturing the complexity of GRN interactions through the introduction of time-varying kinetic order parameters, while allowing for variability in multiple model parameters. This model is used as the drift function in the development of several stochastic GRN mod- els based on Langevin dynamics. Six models are introduced which capture intrinsic and extrinsic noise in GRNs, thereby providing a full characterization of a stochastic regulatory system. A Bayesian hierarchical approach is developed for learning the Langevin model which best describes the noise dynamics at each time step. The trajectory of the state, which are the gene expression values, as well as the indicator corresponding to the correct noise model are estimated via sequential Monte Carlo (SMC) with a high degree of accuracy. To address the problem of time-varying regulatory interactions, a Bayesian hierarchical model is introduced for learning variation in switching GRN architectures with unknown measurement noise covariance. The trajectory of the state and the indicator corresponding to the network configuration at each time point are estimated using SMC. This work is extended to a fully Bayesian hierarchical model to account for uncertainty in the process noise covariance associated with each network architecture. An SMC algorithm with local Gibbs sampling is developed to estimate the trajectory of the state and the indicator correspond- ing to the network configuration at each time point with a high degree of accuracy. The results demonstrate the efficacy of Bayesian methods for learning information in switching nonlinear GRNs.
Date Created
2023
Agent

Compressed-Domain Deep Learning with Application to Image Recognition and Universal Adversarial Attack

189300-Thumbnail Image.png
Description
Researchers have shown that the predictions of a deep neural network (DNN) for an image set can be severely distorted by one single image-agnostic perturbation, or universal perturbation, usually with an empirically fixed threshold in the spatial domain to restrict

Researchers have shown that the predictions of a deep neural network (DNN) for an image set can be severely distorted by one single image-agnostic perturbation, or universal perturbation, usually with an empirically fixed threshold in the spatial domain to restrict its perceivability. However, current universal perturbations have limited attack ability, and more importantly, limiting the perturbation's norm in the spatial domain may not be a suitable way to restrict the perceptibility of universal adversarial perturbations. Besides, the effects of such attacks on DNN-based texture recognition have yet to be explored. Learning-based image compression was shown to achieve a competitive performance with state-of-the-art transform-based codecs. This motivated the development of learning-based image compression systems targeting both humans and machines. Also, the learning-based compressed-domain representations can be utilized to perform computer vision tasks directly in the compressed domain. In the context of universal attacks, a novel method is proposed to compute more effective universal perturbations via enhanced projected gradient descent on targeted classifiers. The perturbation is optimized by accumulating small updates on perturbed images consecutively. Performance results show that the proposed adversarial attack method can achieve much higher fooling rates as compared to state-of-the-art universal attack methods. In order to reduce the perceptibility of universal attacks without compromising their effectiveness, a frequency-tuned universal attack framework is proposed to adopt JND thresholds to guide the perceptibility of universal adversarial perturbations. The proposed frequency-tuned attack method can achieve cutting-edge quantitative results, realize a good balance between perceptibility and effectiveness in terms of fooling rate on both natural and texture image datasets. In the context of compressed-domain image recognition, a novel feature adaptation module integrating a lightweight attention model is proposed to adaptively emphasize and enhance the key features within the extracted channel-wise information. Also, an adaptation training strategy is designed to utilize the pretrained pixel-domain weights. The obtained performance results show that the proposed compressed-domain classification model can distinctly outperform the existing compressed-domain classifiers, and that it can also yield similar accuracy results with a much higher computational efficiency as compared to the decoded image trained pixel-domain models.
Date Created
2023
Agent

Applications and Machine-Learning Prediction of Nonlinear Dynamical Systems

189258-Thumbnail Image.png
Description
Predicting nonlinear dynamical systems has been a long-standing challenge in science. This field is currently witnessing a revolution with the advent of machine learning methods. Concurrently, the analysis of dynamics in various nonlinear complex systems continues to be crucial. Guided

Predicting nonlinear dynamical systems has been a long-standing challenge in science. This field is currently witnessing a revolution with the advent of machine learning methods. Concurrently, the analysis of dynamics in various nonlinear complex systems continues to be crucial. Guided by these directions, I conduct the following studies. Predicting critical transitions and transient states in nonlinear dynamics is a complex problem. I developed a solution called parameter-aware reservoir computing, which uses machine learning to track how system dynamics change with a driving parameter. I show that the transition point can be accurately predicted while trained in a sustained functioning regime before the transition. Notably, it can also predict if the system will enter a transient state, the distribution of transient lifetimes, and their average before a final collapse, which are crucial for management. I introduce a machine-learning-based digital twin for monitoring and predicting the evolution of externally driven nonlinear dynamical systems, where reservoir computing is exploited. Extensive tests on various models, encompassing optics, ecology, and climate, verify the approach’s effectiveness. The digital twins can extrapolate unknown system dynamics, continually forecast and monitor under non-stationary external driving, infer hidden variables, adapt to different driving waveforms, and extrapolate bifurcation behaviors across varying system sizes. Integrating engineered gene circuits into host cells poses a significant challenge in synthetic biology due to circuit-host interactions, such as growth feedback. I conducted systematic studies on hundreds of circuit structures exhibiting various functionalities, and identified a comprehensive categorization of growth-induced failures. I discerned three dynamical mechanisms behind these circuit failures. Moreover, my comprehensive computations reveal a scaling law between the circuit robustness and the intensity of growth feedback. A class of circuits with optimal robustness is also identified. Chimera states, a phenomenon of symmetry-breaking in oscillator networks, traditionally have transient lifetimes that grow exponentially with system size. However, my research on high-dimensional oscillators leads to the discovery of ’short-lived’ chimera states. Their lifetime increases logarithmically with system size and decreases logarithmically with random perturbations, indicating a unique fragility. To understand these states, I use a transverse stability analysis supported by simulations.
Date Created
2023
Agent

Learning Predictive Models for Assisted Human Biomechanics

189226-Thumbnail Image.png
Description
This dissertation explores the use of artificial intelligence and machine learningtechniques for the development of controllers for fully-powered robotic prosthetics. The aim of the research is to enable prosthetics to predict future states and control biomechanical properties in both linear and nonlinear

This dissertation explores the use of artificial intelligence and machine learningtechniques for the development of controllers for fully-powered robotic prosthetics. The aim of the research is to enable prosthetics to predict future states and control biomechanical properties in both linear and nonlinear fashions, with a particular focus on ergonomics. The research is motivated by the need to provide amputees with prosthetic devices that not only replicate the functionality of the missing limb, but also offer a high level of comfort and usability. Traditional prosthetic devices lack the sophistication to adjust to a user’s movement patterns and can cause discomfort and pain over time. The proposed solution involves the development of machine learning-based controllers that can learn from user movements and adjust the prosthetic device’s movements accordingly. The research involves a combination of simulation and real-world testing to evaluate the effectiveness of the proposed approach. The simulation involves the creation of a model of the prosthetic device and the use of machine learning algorithms to train controllers that predict future states and control biomechanical properties. The real- world testing involves the use of human subjects wearing the prosthetic device to evaluate its performance and usability. The research focuses on two main areas: the prediction of future states and the control of biomechanical properties. The prediction of future states involves the development of machine learning algorithms that can analyze a user’s movements and predict the next movements with a high degree of accuracy. The control of biomechanical properties involves the development of algorithms that can adjust the prosthetic device’s movements to ensure maximum comfort and usability for the user. The results of the research show that the use of artificial intelligence and machine learning techniques can significantly improve the performance and usability of pros- thetic devices. The machine learning-based controllers developed in this research are capable of predicting future states and adjusting the prosthetic device’s movements in real-time, leading to a significant improvement in ergonomics and usability. Overall, this dissertation provides a comprehensive analysis of the use of artificial intelligence and machine learning techniques for the development of controllers for fully-powered robotic prosthetics.
Date Created
2023
Agent

Differential Privacy Protection via Inexact Data Cloning

187820-Thumbnail Image.png
Description
With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful,

With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful, accurate information and protecting it at the same time has been challenging, especially in healthcare. The data owners lack an automated resource that provides layers of protection on a published dataset with validated statistical values for usability. Differential privacy (DP) has gained a lot of attention in the past few years as a solution to the above-mentioned dual problem. DP is defined as a statistical anonymity model that can protect the data from adversarial observation while still providing intended usage. This dissertation introduces a novel DP protection mechanism called Inexact Data Cloning (IDC), which simultaneously protects and preserves information in published data while conveying source data intent. IDC preserves the privacy of the records by converting the raw data records into clonesets. The clonesets then pass through a classifier that removes potential compromising clonesets, filtering only good inexact cloneset. The mechanism of IDC is dependent on a set of privacy protection metrics called differential privacy protection metrics (DPPM), which represents the overall protection level. IDC uses two novel performance values, differential privacy protection score (DPPS) and clone classifier selection percentage (CCSP), to estimate the privacy level of protected data. In support of using IDC as a viable data security product, a software tool chain prototype, differential privacy protection architecture (DPPA), was developed to utilize the IDC. DPPA used the engineering security mechanism of IDC. DPPA is a hub which facilitates a market for data DP security mechanisms. DPPA works by incorporating standalone IDC mechanisms and provides automation, IDC protected published datasets and statistically verified IDC dataset diagnostic report. DPPA is currently doing functional, and operational benchmark processes that quantifies the DP protection of a given published dataset. The DPPA tool was recently used to test a couple of health datasets. The test results further validate the IDC mechanism as being feasible.
Date Created
2023
Agent

In-Band Full Duplex Analog Control and Analysis

187695-Thumbnail Image.png
Description
In-Band Full-Duplex (IBFD) can maximize the spectral resources and enable new types of technology, but generates self-interference (SI) that must be mitigated to enable practical applications. Analog domain SI cancellation (SIC), usually implemented as a digitally controlled adaptive filter, is

In-Band Full-Duplex (IBFD) can maximize the spectral resources and enable new types of technology, but generates self-interference (SI) that must be mitigated to enable practical applications. Analog domain SI cancellation (SIC), usually implemented as a digitally controlled adaptive filter, is one technique that is necessary to mitigate the interference below the noise floor. To maximize the efficiency and performance of the adaptive filter this thesis studies how key design choices impact the performance so that device designers can make better tradeoff decisions. Additionally, algorithms are introduced to maximize the SIC that incorporate the hardware constraints. The provided simulations show up to 45dB SIC with 7 bits of precision at 100MHz bandwidth.
Date Created
2023
Agent

Neural Fields for Tomographic Imaging: with Applications in X-ray Computed Tomography and Synthetic Aperture Sonar

187685-Thumbnail Image.png
Description
Computed tomography (CT) and synthetic aperture sonar (SAS) are tomographic imaging techniques that are fundamental for applications within medical and remote sensing. Despite their successes, a number of factors constrain their image quality. For example, a time-varying scene during measurement

Computed tomography (CT) and synthetic aperture sonar (SAS) are tomographic imaging techniques that are fundamental for applications within medical and remote sensing. Despite their successes, a number of factors constrain their image quality. For example, a time-varying scene during measurement acquisition yields image artifacts. Additionally, factors such as bandlimited or sparse measurements limit image resolution. This thesis presents novel algorithms and techniques to account for these factors during image formation and outperform traditional reconstruction methods. In particular, this thesis formulates analysis-by-synthesis optimizations that leverage neural fields to predict the scene and differentiable physics models that incorporate prior knowledge about image formation. The specific contributions include: (1) a method for reconstructing CT measurements from time-varying (non-stationary) scenes; (2) a method for deconvolving SAS images, which benefits image quality; (3) a method that couples neural fields and a differentiable acoustic model for 3D SAS reconstructions.
Date Created
2023
Agent

Decentralized Motion Planning for Autonomous Multi-Agent Systems: Multi-Segment Manipulators and Mobile Robot Collectives

171848-Thumbnail Image.png
Description
Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target

Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with obstacles, and deadlocks. Despite extensive research on these control problems, there are still challenges in designing controllers that (1) are scalable with the number of agents; (2) have theoretical guarantees on collision-free agent navigation; and (3) can be used when the states of the agents and the environment are only partially observable. Existing centralized and distributed control architectures have limited scalability due to their computational complexity and communication requirements, while decentralized control architectures are often effective only under impractical assumptions that do not hold in real-world implementations. The main objective of this dissertation is to develop and evaluate decentralized approaches for multi-agent motion control that enable agents to use their onboard sensors and computational resources to decide how to move through their environment, with limited or absent inter-agent communication and external supervision. Specifically, control approaches are designed for multi-segment manipulators and mobile robot collectives to achieve position and pose (position and orientation) stabilization, trajectory tracking, and collision and deadlock avoidance. These control approaches are validated in both simulations and physical experiments to show that they can be implemented in real-time while remaining computationally tractable. First, kinematic controllers are proposed for position stabilization and trajectory tracking control of two- or three-dimensional hyper-redundant multi-segment manipulators. Next, robust and gradient-based feedback controllers are presented for individual holonomic and nonholonomic mobile robots that achieve position stabilization, trajectory tracking control, and obstacle avoidance. Then, nonlinear Model Predictive Control methods are developed for collision-free, deadlock-free pose stabilization and trajectory tracking control of multiple nonholonomic mobile robots in known and unknown environments with obstacles, both static and dynamic. Finally, a feedforward proportional-derivative controller is defined for collision-free velocity tracking of a moving ground target by multiple unmanned aerial vehicles.
Date Created
2022
Agent