Design and Analysis of Auto-parametrically Excited Platform for Active Vibration Control

156250-Thumbnail Image.png
Description
Recent research and study have showed the potential of auto-parametric system in controlling stability and parametric resonance. In this project, two different designs for auto-parametrically excited mass-spring-damper systems were studied. The theoretical models were developed to describe the behavior of

Recent research and study have showed the potential of auto-parametric system in controlling stability and parametric resonance. In this project, two different designs for auto-parametrically excited mass-spring-damper systems were studied. The theoretical models were developed to describe the behavior of the systems, and simulation models were constructed to validate the analytical results. The error between simulation and theoretical results was within 2%. Both theoretical and simulation results showed that the implementation of auto-parametric system could help reduce or amplify the resonance significantly.
Date Created
2018
Agent

Design and development of a passive prosthetic ankle

155947-Thumbnail Image.png
Description
In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to

In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has two springs: one mimicking Achilles tendon and the other mimicking Anterior-Tibialis tendon. The dynamics of the prosthetic ankle is discussed and simulated using Working model 2D. The simulation results are used to optimize the springs stiffness. Two experiments are conducted using the developed ankle to verify the simulation It is found that this novel ankle design is better than Solid Ankle Cushioned Heel (SACH) foot. The experimental data is used to find the tendon and muscle activation forces of the subject wearing the prosthesis using OpenSim. A conclusion is included along with suggested future work.
Date Created
2017
Agent

Overall Market and Performance Comparison of Coil-over and Air Shock Absorbers

134694-Thumbnail Image.png
Description
The SAE Baja series is a competition that challenges university student teams on all aspects of designing, building, and testing an all-terrain vehicle. In the competition, the teams present their engineering analysis of all components of their vehicle to a

The SAE Baja series is a competition that challenges university student teams on all aspects of designing, building, and testing an all-terrain vehicle. In the competition, the teams present their engineering analysis of all components of their vehicle to a panel of professional engineers to show why the team's design is the overall best in performance and in manufacturing cost. Currently Arizona State University's SAE Baja team does not have a method to analyze their vehicle's suspension system, especially on the car's shock absorbers. The current solution to this problem is to change the shock absorber parameters, test drive the car, and repeat the shock absorber tuning until the car is able to produce the performance that the team desires. The following paper introduces and demonstrates three different methods, ADAMS Car, SOLIDWORKS, and MATLAB, that can be used to analyze the suspension system and gather data that can be used in the competition presentation. ADAMS Car is a power software that is used in the automotive and other engineering fields. The program does have a steep learning curve, but once the team is comfortable using it, ADAMS is very helpful with subsystem analysis and full body analysis. SOLIDWORKS can be used to perform motion analysis and drop tests, which can then be exported into ADAMS for further analysis. MATLAB can be used to model the Baja vehicle as a quarter model, which makes it easier for the team to model. Using the methods presented in this paper, ASU's Baja team can test coil-over and air shock absorbers to determine which type is more suitable for the performance and overall cost of the whole vehicle.
Date Created
2016-12
Agent

Analysis of hardware usage of shuffle instruction based performance optimization in the Blinds-II image quality assessment algorithm

155837-Thumbnail Image.png
Description
With the advent of GPGPU, many applications are being accelerated by using CUDA programing paradigm. We are able to achieve around 10x -100x speedups by simply porting the application on to the GPU and running the parallel chunk of code

With the advent of GPGPU, many applications are being accelerated by using CUDA programing paradigm. We are able to achieve around 10x -100x speedups by simply porting the application on to the GPU and running the parallel chunk of code on its multi cored SIMT (Single instruction multiple thread) architecture. But for optimal performance it is necessary to make sure that all the GPU resources are efficiently used, and the latencies in the application are minimized. For this, it is essential to monitor the Hardware usage of the algorithm and thus diagnose the compute and memory bottlenecks in the implementation. In the following thesis, we will be analyzing the mapping of CUDA implementation of BLIINDS-II algorithm on the underlying GPU hardware, and come up with a Kepler architecture specific solution of using shuffle instruction via CUB library to tackle the two major bottlenecks in the algorithm. Experiments were conducted to convey the advantage of using shuffle instru3ction in algorithm over only using shared memory as a buffer to global memory. With the new implementation of BLIINDS-II algorithm using CUB library, a speedup of around 13.7% was achieved.
Date Created
2017
Agent

Analysis and Simulation of Wiseman Hypocycloid Engine

128116-Thumbnail Image.png
Description

This research studies an alternative to the slider-crank mechanism for internal combustion engines, which was proposed by the Wiseman Technologies Inc. Their design involved replacing the crankshaft with a hypocycloid gear assembly. The unique hypocycloid gear arrangement allowed the piston

This research studies an alternative to the slider-crank mechanism for internal combustion engines, which was proposed by the Wiseman Technologies Inc. Their design involved replacing the crankshaft with a hypocycloid gear assembly. The unique hypocycloid gear arrangement allowed the piston and connecting rod to move in a straight line creating a perfect sinusoidal motion, without any side loads. In this work, the Wiseman hypocycloid engine was modeled in a commercial engine simulation software and compared to slider-crank engine of the same size. The engine’s performance was studied, while operating on diesel, ethanol, and gasoline fuel. Furthermore, a scaling analysis on the Wiseman engine prototypes was carried out to understand how the performance of the engine is affected by increasing the output power and cylinder displacement.

It was found that the existing 30cc Wiseman engine produced about 7% less power at peak speeds than the slider-crank engine of the same size. These results were concurrent with the dynamometer tests performed in the past. It also produced lower torque and was about 6% less fuel efficient than the slider-crank engine. The four-stroke diesel variant of the same Wiseman engine performed better than the two-stroke gasoline version. The Wiseman engine with a contra piston (that allowed to vary the compression ratio) showed poor fuel efficiency but produced higher torque when operating on E85 fuel. It also produced about 1.4% more power than while running on gasoline. While analyzing effects of the engine size on the Wiseman hypocycloid engine prototypes, it was found that the engines performed better in terms of power, torque, fuel efficiency, and cylinder brake mean effective pressure as the displacement increased. The 30 horsepower (HP) conceptual Wiseman prototype, while operating on E85, produced the most optimum results in all aspects, and the diesel test for the same engine proved to be the most fuel efficient.

Date Created
2014-12-16
Agent

Supervisory Control Optimization with Sequential Quadratic Programming for Parallel Hybrid Vehicle with Synchronous Power Sources

155667-Thumbnail Image.png
Description
The thesis covers the development and modeling of the supervisory hybrid controller using two different methods to achieve real-world optimization and power split of a parallel hybrid vehicle with a fixed shaft connecting the Internal Combustion Engine (ICE) and Electric

The thesis covers the development and modeling of the supervisory hybrid controller using two different methods to achieve real-world optimization and power split of a parallel hybrid vehicle with a fixed shaft connecting the Internal Combustion Engine (ICE) and Electric Motor (EM). The first strategy uses a rule based controller to determine modes the vehicle should operate in. This approach is well suited for real-world applications. The second approach uses Sequential Quadratic Programming (SQP) approach in conjunction with an Equivalent Consumption Minimization Strategy (ECMS) strategy to keep the vehicle in the most efficient operating regions. This latter method is able to operate the vehicle in various drive cycles while maintaining the SOC with-in allowed charge sustaining (CS) limits. Further, the overall efficiency of the vehicle for all drive cycles is increased. The limitation here is the that process is computationally expensive; however, with advent of the low cost high performance hardware this method can be used for the hybrid vehicle control.
Date Created
2017
Agent

Nonlinear phase based control to generate and assist oscillatory motion with wearable robotics

155166-Thumbnail Image.png
Description
Wearable robotics is a growing sector in the robotics industry, they can increase the productivity of workers and soldiers and can restore some of the lost function to people with disabilities. Wearable robots should be comfortable, easy to use, and

Wearable robotics is a growing sector in the robotics industry, they can increase the productivity of workers and soldiers and can restore some of the lost function to people with disabilities. Wearable robots should be comfortable, easy to use, and intuitive. Robust control methods are needed for wearable robots that assist periodic motion.

This dissertation studies a phase based oscillator constructed with a second order dynamic system and a forcing function based on the phase angle of the system. This produces a bounded control signal that can alter the damping and stiffens properties of the dynamic system. It is shown analytically and experimentally that it is stable and robust. It can handle perturbations remarkably well. The forcing function uses the states of the system to produces stable oscillations. Also, this work shows the use of the phase based oscillator in wearable robots to assist periodic human motion focusing on assisting the hip motion. One of the main problems to assist periodic motion properly is to determine the frequency of the signal. The phase oscillator eliminates this problem because the signal always has the correct frequency. The input requires the position and velocity of the system. Additionally, the simplicity of the controller allows for simple implementation.
Date Created
2016
Agent

Robust human motion tracking using low-cost inertial sensors

155146-Thumbnail Image.png
Description
The advancements in the technology of MEMS fabrication has been phenomenal in recent years. In no mean measure this has been the result of continued demand from the consumer electronics market to make devices smaller and better. MEMS inertial measuring

The advancements in the technology of MEMS fabrication has been phenomenal in recent years. In no mean measure this has been the result of continued demand from the consumer electronics market to make devices smaller and better. MEMS inertial measuring units (IMUs) have found revolutionary applications in a wide array of fields like medical instrumentation, navigation, attitude stabilization and virtual reality. It has to be noted though that for advanced applications of motion tracking, navigation and guidance the cost of the IMUs is still pretty high. This is mainly because the process of calibration and signal processing used to get highly stable results from MEMS IMU is an expensive and time-consuming process. Also to be noted is the inevitability of using external sensors like GPS or camera for aiding the IMU data due to the error propagation in IMU measurements adds to the complexity of the system.

First an efficient technique is proposed to acquire clean and stable data from unaided IMU measurements and then proceed to use that system for tracking human motion. First part of this report details the design and development of the low-cost inertial measuring system ‘yIMU’. This thesis intends to bring together seemingly independent techniques that were highly application specific into one monolithic algorithm that is computationally efficient for generating reliable orientation estimates. Second part, systematically deals with development of a tracking routine for human limb movements. The validity of the system has then been verified.

The central idea is that in most cases the use of expensive MEMS IMUs is not warranted if robust smart algorithms can be deployed to gather data at a fraction of the cost. A low-cost prototype has been developed comparable to tactical grade performance for under $15 hardware. In order to further the practicability of this device we have applied it to human motion tracking with excellent results. The commerciality of device has hence been thoroughly established.
Date Created
2016
Agent

GPGPU based implementation of BLIINDS-II NR-IQA

155003-Thumbnail Image.png
Description
The technological advances in the past few decades have made possible creation and consumption of digital visual content at an explosive rate. Consequently, there is a need for efficient quality monitoring systems to ensure minimal degradation of images and videos

The technological advances in the past few decades have made possible creation and consumption of digital visual content at an explosive rate. Consequently, there is a need for efficient quality monitoring systems to ensure minimal degradation of images and videos during various processing operations like compression, transmission, storage etc. Objective Image Quality Assessment (IQA) algorithms have been developed that predict quality scores which match well with human subjective quality assessment. However, a lot of research still remains to be done before IQA algorithms can be deployed in real world systems. Long runtimes for one frame of image is a major hurdle. Graphics Processing Units (GPUs), equipped with massive number of computational cores, provide an opportunity to accelerate IQA algorithms by performing computations in parallel. Indeed, General Purpose Graphics Processing Units (GPGPU) techniques have been applied to a few Full Reference IQA algorithms which fall under the. We present a GPGPU implementation of Blind Image Integrity Notator using DCT Statistics (BLIINDS-II), which falls under the No Reference IQA algorithm paradigm. We have been able to achieve a speedup of over 30x over the previous CPU version of this algorithm. We test our implementation using various distorted images from the CSIQ database and present the performance trends observed. We achieve a very consistent performance of around 9 milliseconds per distorted image, which made possible the execution of over 100 images per second (100 fps).
Date Created
2016
Agent

Human computer interface using electroencephalography

153807-Thumbnail Image.png
Description
Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user

Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user thoughts into machine commands, it is important to have robust and fail proof signal processing and machine learning modules which operate on the raw EEG signals and estimate the current thought of the user.

In this thesis, several techniques used to perform EEG signal pre-processing, feature extraction and signal classification have been discussed, implemented, validated and verified; efficient supervised machine learning models, for the EEG motor imagery signal classification are identified. To further improve the performance of system unsupervised feature learning techniques have been investigated by pre-training the Deep Learning models. Use of pre-training stacked autoencoders have been proposed to solve the problems caused by random initialization of weights in neural networks.

Motor Imagery (imaginary hand and leg movements) signals are acquire using the Emotiv EEG headset. Different kinds of features like mean signal, band powers, RMS of the signal have been extracted and supplied to the machine learning (ML) stage, wherein, several ML techniques like LDA, KNN, SVM, Logistic regression and Neural Networks are applied and validated. During the validation phase the performances of various techniques are compared and some important observations are reported. Further, deep Learning techniques like autoencoding have been used to perform unsupervised feature learning. The reliability of the features is analyzed by performing classification by using the ML techniques mentioned earlier. The performance of the neural networks has been further improved by pre-training the network in an unsupervised fashion using stacked autoencoders and supplying the stacked autoencoders’ network parameters as initial parameters to the neural network. All the findings in this research, during each phase (pre-processing, feature extraction, classification) are directly relevant and can be used by the BCI research community for building motor imagery based BCI applications.

Additionally, this thesis attempts to develop, test, and compare the performance of an alternative method for classifying human driving behavior. This thesis proposes the use of driver affective states to know the driving behavior. The purpose of this part of the thesis was to classify the EEG data collected from several subjects while driving simulated vehicle and compare the classification results with those obtained by classifying the driving behavior using vehicle parameters collected simultaneously from all the subjects. The objective here is to see if the drivers’ mental state is reflected in his driving behavior.
Date Created
2015
Agent