Personalized Transtibial Prosthesis Aesthetic Cover

Description

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.

Date Created
2021-05
Agent

Personalized Transtibial Prosthesis Aesthetic Cover

Description

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with

This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.

Date Created
2021-05
Agent

A Study on the Analysis of Treadmill Perturbation Data for the Design of Active Ankle Foot Orthosis to Prevent Falls and Gait Rehabilitation

158636-Thumbnail Image.png
Description
According to the Center for Disease Control and Prevention report around 29,668 United States residents aged greater than 65 years had died as a result of a fall in 2016. Other injuries like wrist fractures, hip fractures, and head injuries

According to the Center for Disease Control and Prevention report around 29,668 United States residents aged greater than 65 years had died as a result of a fall in 2016. Other injuries like wrist fractures, hip fractures, and head injuries occur as a result of a fall. Certain groups of people are more prone to experience falls than others, one of which being individuals with stroke. The two most common issues with individuals with strokes are ankle weakness and foot drop, both of which contribute to falls. To mitigate this issue, the most popular clinical remedy given to these users is thermoplastic Ankle Foot Orthosis. These AFO's help improving gait velocity, stride length, and cadence. However, studies have shown that a continuous restraint on the ankle harms the compensatory stepping response and forward propulsion. It has been shown in previous studies that compensatory stepping and forward propulsion are crucial for the user's ability to recover from postural perturbations. Hence, there is a need for active devices that can supply a plantarflexion during the push-off and dorsiflexion during the swing phase of gait. Although advancements in the orthotic research have shown major improvements in supporting the ankle joint for rehabilitation, there is a lack of available active devices that can help impaired users in daily activities. In this study, our primary focus is to build an unobtrusive, cost-effective, and easy to wear active device for gait rehabilitation and fall prevention in individuals who are at risk. The device will be using a double-acting cylinder that can be easily incorporated into the user's footwear using a novel custom-designed powered ankle brace. The device will use Inertial Measurement Units to measure kinematic parameters of the lower body and a custom control algorithm to actuate the device based on the measurements. The study can be used to advance the field of gait assistance, rehabilitation, and potentially fall prevention of individuals with lower-limb impairments through the use of Active Ankle Foot Orthosis.
Date Created
2020
Agent

Design of Suction Stabilized Floats for First Responder Localization via Ultra-Wideband (UWB) and Internet of Things (IoT)

158114-Thumbnail Image.png
Description
Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction

Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to help first responders establish a localized coordinate system to assist in rescues. The floats create a stabilized platform for each anchor module due to the inverse slack tank effect established by the inner water chamber. The design of the float has also been proven to be stable in most cases of amplitudes and frequencies ranging from 0 to 100 except for when the frequency ranges from 23 to 60 Hz for almost all values of the amplitude. The modules in the system form a coordinate grid based off the anchors that can track the location of a tag module within the range of the system using ultra-wideband communications. This method of location identification allows responders to use the system in GPS denied environments. The system can be accessed through an Android app with Bluetooth communications in close ranges or through internet of things (IoT) using a module as a listener, a Raspberry Pi and an internet source. The system has proven to identify the location of the tag in moderate ranges with an approximate accuracy of the tag location being 15 cm.
Date Created
2020
Agent

Analysis and Control of Space Systems Dynamics via Floquet Theory, Normal Forms and Center Manifold Reduction

157921-Thumbnail Image.png
Description
It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea

into an elaborate functioning

It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea

into an elaborate functioning enterprise. It is for this reason that this dissertation seeks to contribute towards the search for simpler, efficacious and more reliable methodologies and tools that accurately model and analyze space systems dynamics. Inopportunely, despite the inimical physical hazards, space systems must endure a perturbing dynamical environment that persistently disorients spacecraft attitude, dislodges spacecraft from their designated orbital locations and compels spacecraft to follow undesired orbital trajectories. The ensuing dynamics’ analytical models are complexly structured, consisting of parametrically excited nonlinear systems with external periodic excitations–whose analysis and control is not a trivial task. Therefore, this dissertation’s objective is to overcome the limitations of traditional approaches (averaging and perturbation, linearization) commonly used to analyze and control such dynamics; and, further obtain more accurate closed-form analytical solutions in a lucid and broadly applicable manner. This dissertation hence implements a multi-faceted methodology that relies on Floquet theory, invariant center manifold reduction and normal forms simplification. At the heart of this approach is an intuitive system state augmentation technique that transforms non-autonomous nonlinear systems into autonomous ones. Two fitting representative types of space systems dynamics are investigated; i) attitude motion of a gravity gradient stabilized spacecraft in an eccentric orbit, ii) spacecraft motion in the vicinity of irregularly shaped small bodies. This investigation demonstrates how to analyze the motion stability, chaos, periodicity and resonance. Further, versal deformation of the normal forms scrutinizes the bifurcation behavior of the gravity gradient stabilized attitude motion. Control laws developed on transformed, more tractable analytical models show that; unlike linear control laws, nonlinear control strategies such as sliding mode control and bifurcation control stabilize the intricate, unwieldy astrodynamics. The pitch attitude dynamics are stabilized; and, a regular periodic orbit realized in the vicinity of small irregularly shaped bodies. Importantly, the outcomes obtained are unconventionally realized as closed-form analytical solutions obtained via the comprehensive approach introduced by this dissertation.
Date Created
2019
Agent

Resonant microbeam high resolution vibrotactile haptic display

157187-Thumbnail Image.png
Description
One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating

One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating elements placed against the skin, allowing the blind individual to receive visual information through touch. However, these approaches have two significant technical challenges: large vibration element size and the number of microcontroller pins required for vibration control, both causing excessively low resolution of the device. Here, I propose and investigate a type of high-resolution vibrotactile haptic display which overcomes these challenges by utilizing a ‘microbeam’ as the vibrating element. These microbeams can then be actuated using only one microcontroller pin connected to a speaker or surface transducer. This approach could solve the low-resolution problem currently present in all haptic displays. In this paper, the results of an investigation into the manufacturability of such a device, simulation of the vibrational characteristics, and prototyping and experimental validation of the device concept are presented. The possible reasons of the frequency shift between the result of the forced or free response of beams and the frequency calculated based on a lumped mass approximation are investigated. It is found that one of the important reasons for the frequency shift is the size effect, the dependency of the elastic modulus on the size and kind of material. This size effect on A2 tool steel for Micro-Meso scale cantilever beams for the proposed system is investigated.
Date Created
2019
Agent

Soft Robotics: A Quasi-Passive Knee Brace to Assist in Lifting

132509-Thumbnail Image.png
Description
This research evaluated soft robotic knee brace designs that were intended to reduce the risk of injury, chronic pain, and osteoarthritis in laborers tasked with repetitive lifting. A soft robotic quasi-passive system was proposed due to energy efficiency, comfortability, and

This research evaluated soft robotic knee brace designs that were intended to reduce the risk of injury, chronic pain, and osteoarthritis in laborers tasked with repetitive lifting. A soft robotic quasi-passive system was proposed due to energy efficiency, comfortability, and weight. The researcher developed three quasi-passive knee brace systems that would store energy when the user attempted a squat lift and release the energy when the user stood up. The first design focused on using clamped layered leaf springs to create an increased resistive force when the user bends at the knee. The researchers found that because of the unideal clamping of the springs the design failed to produce a significant increase to the forces the user experienced. The second design used a change in length of the layered leaf springs to provide a significant change in force. Through simple tests, the researchers found that the design did create a change in force significant enough to warrant further testing of the design in the future. The third and final design was inspired by a previous honors thesis by Ryan Bellman, this design used pre-stretched elastic bands to create an increased bending moment. Through experimental testing, the researchers found that the elastic bands created a factor increase of 8 from a non-loaded test. Further work would include prototyping a knee brace design and developing a method to allow the user to stretch and unstretch the elastic bands at will. In conclusion, design 2 and design 3 have the potential to significantly increase the well being of workers and increase their knee longevity.
Date Created
2019-05
Agent

Human Activity Recognition and Control of Wearable Robots

156950-Thumbnail Image.png
Description
Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries

Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity.

This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega ($A \omega$) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the $A \omega$ algorithm is based on thigh angle measurements from a single IMU.

This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator ($A\omega AO$) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The $A \omega$ algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The $A\omega AO$ method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.
Date Created
2018
Agent

Design and Development of Flexible Sensors Using Non-Conventional Methods

156349-Thumbnail Image.png
Description
In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors.

In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down on cost to produce the sensors as well as enabling the manufacture of custom sensors in different sizes and different configurations. Currently commercially available sensors are expensive and are usually designed for very specific applications. By creating these same types of sensors using new methods and materials, these new sensors will show that flexible sensor creation for many uses at a fraction of the cost is achievable.
Date Created
2018
Agent

Sensor Development for Physiological and Environmental Monitoring

156321-Thumbnail Image.png
Description
The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase

The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase incorporation of sensors into portable electrical devices. The value for sensor technologies are increased when the sensors are developed into innovative measuring system for application uses in the Aerospace, Defense, and Healthcare industries. While sensors are not new, their increased performance, size reduction, and decrease in cost has opened the door for innovative sensor combination for portable devices that could be worn or easily moved around. With this opportunity for further development of sensor use through concept engineering development, three concept projects for possible innovative portable devices was undertaken in this research. One project was the development of a pulse oximeter devise with fingerprint recognition. The second project was prototyping a portable Bluetooth strain gage monitoring system. The third project involved sensors being incorporated onto flexible printed circuit board (PCB) for improved comfort of wearable devices. All these systems were successfully tested in lab.
Date Created
2018
Agent