Description

This research studies an alternative to the slider-crank mechanism for internal combustion engines, which was proposed by the Wiseman Technologies Inc. Their design involved replacing the crankshaft with a hypocycloid gear assembly. The unique hypocycloid gear arrangement allowed the piston

This research studies an alternative to the slider-crank mechanism for internal combustion engines, which was proposed by the Wiseman Technologies Inc. Their design involved replacing the crankshaft with a hypocycloid gear assembly. The unique hypocycloid gear arrangement allowed the piston and connecting rod to move in a straight line creating a perfect sinusoidal motion, without any side loads. In this work, the Wiseman hypocycloid engine was modeled in a commercial engine simulation software and compared to slider-crank engine of the same size. The engine’s performance was studied, while operating on diesel, ethanol, and gasoline fuel. Furthermore, a scaling analysis on the Wiseman engine prototypes was carried out to understand how the performance of the engine is affected by increasing the output power and cylinder displacement.

It was found that the existing 30cc Wiseman engine produced about 7% less power at peak speeds than the slider-crank engine of the same size. These results were concurrent with the dynamometer tests performed in the past. It also produced lower torque and was about 6% less fuel efficient than the slider-crank engine. The four-stroke diesel variant of the same Wiseman engine performed better than the two-stroke gasoline version. The Wiseman engine with a contra piston (that allowed to vary the compression ratio) showed poor fuel efficiency but produced higher torque when operating on E85 fuel. It also produced about 1.4% more power than while running on gasoline. While analyzing effects of the engine size on the Wiseman hypocycloid engine prototypes, it was found that the engines performed better in terms of power, torque, fuel efficiency, and cylinder brake mean effective pressure as the displacement increased. The 30 horsepower (HP) conceptual Wiseman prototype, while operating on E85, produced the most optimum results in all aspects, and the diesel test for the same engine proved to be the most fuel efficient.

Reuse Permissions
  • Downloads
    PDF (3 MB)
    Download count: 1

    Details

    Title
    • Analysis and Simulation of Wiseman Hypocycloid Engine
    Contributors
    Date Created
    2014-12-16
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    Note
    • The final version of this article, as published in Cogent Engineering, can be viewed online at: https://www.cogentoa.com/article/10.1080/23311916.2014.988402

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Ray, P., & Redkar, S. (2014). Analysis and simulation of Wiseman hypocycloid engine. Cogent Engineering, 1(1). doi:10.1080/23311916.2014.988402

    Machine-readable links