Subjective and objective evaluation of visual attention models

155148-Thumbnail Image.png
Description
Visual attention (VA) is the study of mechanisms that allow the human visual system (HVS) to selectively process relevant visual information. This work focuses on the subjective and objective evaluation of computational VA models for the distortion-free case as well

Visual attention (VA) is the study of mechanisms that allow the human visual system (HVS) to selectively process relevant visual information. This work focuses on the subjective and objective evaluation of computational VA models for the distortion-free case as well as in the presence of image distortions.



Existing VA models are traditionally evaluated by using VA metrics that quantify the match between predicted saliency and fixation data obtained from eye-tracking experiments on human observers. Though there is a considerable number of objective VA metrics, there exists no study that validates that these metrics are adequate for the evaluation of VA models. This work constructs a VA Quality (VAQ) Database by subjectively assessing the prediction performance of VA models on distortion-free images. Additionally, shortcomings in existing metrics are discussed through illustrative examples and a new metric that uses local weights based on fixation density and that overcomes these flaws, is proposed. The proposed VA metric outperforms all other popular existing metrics in terms of the correlation with subjective ratings.



In practice, the image quality is affected by a host of factors at several stages of the image processing pipeline such as acquisition, compression, and transmission. However, none of the existing studies have discussed the subjective and objective evaluation of visual saliency models in the presence of distortion. In this work, a Distortion-based Visual Attention Quality (DVAQ) subjective database is constructed to evaluate the quality of VA maps for images in the presence of distortions. For creating this database, saliency maps obtained from images subjected to various types of distortions, including blur, noise and compression, and varying levels of distortion severity are rated by human observers in terms of their visual resemblance to corresponding ground-truth fixation density maps. The performance of traditionally used as well as recently proposed VA metrics are evaluated by correlating their scores with the human subjective ratings. In addition, an objective evaluation of 20 state-of-the-art VA models is performed using the top-performing VA metrics together with a study of how the VA models’ prediction performance changes with different types and levels of distortions.
Date Created
2016
Agent

Optimal resource allocation in social and critical infrastructure networks

155032-Thumbnail Image.png
Description
We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation

We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+ and others. These powerful social networks are not only used for harnessing revenue from the infrastructure networks, but are also increasingly being used as “non-conventional sensors” for monitoring the infrastructure networks. Accordingly, nowadays, analyses of social and infrastructure networks go hand-in-hand. This dissertation studies resource allocation problems encountered in this set of diverse, heterogeneous, and interdependent networks. Three problems studied in this dissertation are encountered in the physical network domain while the three other problems studied are encountered in the social network domain.

The first problem from the infrastructure network domain relates to distributed files storage scheme with a goal of enhancing robustness of data storage by making it tolerant against large scale geographically-correlated failures. The second problem relates to placement of relay nodes in a deployment area with multiple sensor nodes with a goal of augmenting connectivity of the resulting network, while staying within the budget specifying the maximum number of relay nodes that can be deployed. The third problem studied in this dissertation relates to complex interdependencies that exist between infrastructure networks, such as power grid and communication network. The progressive recovery problem in an interdependent network is studied whose goal is to maximize system utility over the time when recovery process of failed entities takes place in a sequential manner.

The three problems studied from the social network domain relate to influence propagation in adversarial environment and political sentiment assessment in various states in a country with a goal of creation of a “political heat map” of the country. In the first problem of the influence propagation domain, the goal of the second player is to restrict the influence of the first player, while in the second problem the goal of the second player is to have a larger market share with least amount of initial investment.
Date Created
2016
Agent

Analysis of wireless video sensor network platforms over AJAX, CGI and WebRTC

154564-Thumbnail Image.png
Description
Since the inception of Internet of Things (IoT) framework, the amount of interaction between electronic devices has tremendously increased and the ease of implementing software between such devices has bettered. Such data exchange between devices, whether between Node to Server

Since the inception of Internet of Things (IoT) framework, the amount of interaction between electronic devices has tremendously increased and the ease of implementing software between such devices has bettered. Such data exchange between devices, whether between Node to Server or Node to Node, has paved way for creating new business models. Wireless Video Sensor Network Platforms are being used to monitor and understand the surroundings better. Both hardware and software supporting such devices have become much smaller and yet stronger to enable these. Specifically, the invention of better software that enable Wireless data transfer have become more simpler and lightweight technologies such as HTML5 for video rendering, Common Gateway Interface(CGI) scripts enabling interactions between client and server and WebRTC from Google for peer to peer interactions. The role of web browsers in enabling these has been vastly increasing.

Although HTTP is the most reliable and consistent data transfer protocol for such interactions, the most important underlying challenge with such platforms is the performance based on power consumption and latency in data transfer.

In the scope of this thesis, two applications using CGI and WebRTC for data transfer over HTTP will be presented and the power consumption by the peripherals in transmitting the data and the possible implications for those will be discussed.
Date Created
2016
Agent

Efficient routing and resource sharing mechanisms for hybrid optical-wireless access networks

154395-Thumbnail Image.png
Description
The integration of passive optical networks (PONs) and wireless mesh networks (WMNs) into Fiber-Wireless (FiWi) networks has recently emerged as a promising strategy for

providing flexible network services at relative high transmission rates. This work investigates the effectiveness of localized routing

The integration of passive optical networks (PONs) and wireless mesh networks (WMNs) into Fiber-Wireless (FiWi) networks has recently emerged as a promising strategy for

providing flexible network services at relative high transmission rates. This work investigates the effectiveness of localized routing that prioritizes transmissions over the local gateway to the optical network and avoids wireless packet transmissions in radio zones that do not contain the packet source or destination. Existing routing schemes for FiWi networks consider mainly hop-count and delay metrics over a flat WMN node topology and do not specifically prioritize the local network structure. The combination of clustered and localized routing (CluLoR) performs better in terms of throughput-delay compared to routing schemes that are based on minimum hop-count which do not consider traffic localization. Subsequently, this work also investigates the packet delays when relatively low-rate traffic that has traversed a wireless network is mixed with conventional high-rate PON-only traffic. A range of different FiWi network architectures with different dynamic bandwidth allocation (DBA) mechanisms is considered. The grouping of the optical network units (ONUs) in the double-phase polling (DPP) DBA mechanism in long-range (order of 100~Km) FiWi networks is closely examined, and a novel grouping by cycle length (GCL) strategy that achieves favorable packet delay performance is introduced. At the end, this work proposes a novel backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations (e.g., LTE eNBs) and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateway (S/P-GW). The Sm-GW accommodates flexible number of small cells while reducing the infrastructure requirements at the S-GW of LTE backhaul. In contrast to existing methods, the proposed Sm-GW incorporates the scheduling mechanisms to achieve the network fairness while sharing the resources among all the connected small cells base stations.
Date Created
2016
Agent

Visual quality with a focus on 3D blur discrimination and texture granularity

154256-Thumbnail Image.png
Description
Blur is an important attribute in the study and modeling of the human visual system. In this work, 3D blur discrimination experiments are conducted to measure the just noticeable additional blur required to differentiate a target blur from the reference

Blur is an important attribute in the study and modeling of the human visual system. In this work, 3D blur discrimination experiments are conducted to measure the just noticeable additional blur required to differentiate a target blur from the reference blur level. The past studies on blur discrimination have measured the sensitivity of the human visual system to blur using 2D test patterns. In this dissertation, subjective tests are performed to measure blur discrimination thresholds using stereoscopic 3D test patterns. The results of this study indicate that, in the symmetric stereo viewing case, binocular disparity does not affect the blur discrimination thresholds for the selected 3D test patterns. In the asymmetric viewing case, the blur discrimination thresholds decreased and the decrease in threshold values is found to be dominated by the eye observing the higher blur.



The second part of the dissertation focuses on texture granularity in the context of 2D images. A texture granularity database referred to as GranTEX, consisting of textures with varying granularity levels is constructed. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective index that automatically measures the perceived granularity level of textures is also presented. It is shown that the proposed granularity metric correlates well with the subjective granularity scores and outperforms the other methods presented in the literature.

A subjective study is conducted to assess the effect of compression on textures with varying degrees of granularity. A logarithmic function model is proposed as a fit to the subjective test data. It is demonstrated that the proposed model can be used for rate-distortion control by allowing the automatic selection of the needed compression ratio for a target visual quality. The proposed model can also be used for visual quality assessment by providing a measure of the visual quality for a target compression ratio.

The effect of texture granularity on the quality of synthesized textures is studied. A subjective study is presented to assess the quality of synthesized textures with varying levels of texture granularity using different types of texture synthesis methods. This work also proposes a reduced-reference visual quality index referred to as delta texture granularity index for assessing the visual quality of synthesized textures.
Date Created
2015
Agent

MAC-layer algorithm designs for hybrid access network supporting SDN principles

154232-Thumbnail Image.png
Description
Access Networks provide the backbone to the Internet connecting the end-users to

the core network thus forming the most important segment for connectivity. Access

Networks have multiple physical layer medium ranging from fiber cables, to DSL links

and Wireless nodes, creating practically-used hybrid

Access Networks provide the backbone to the Internet connecting the end-users to

the core network thus forming the most important segment for connectivity. Access

Networks have multiple physical layer medium ranging from fiber cables, to DSL links

and Wireless nodes, creating practically-used hybrid access networks. We explore the

hybrid access network at the Medium ACcess (MAC) Layer which receives packets

segregated as data and control packets, thus providing the needed decoupling of data

and control plane. We utilize the Software Defined Networking (SDN) principle of

centralized processing with segregated data and control plane to further extend the

usability of our algorithms. This dissertation introduces novel techniques in Dynamic

Bandwidth allocation, control message scheduling policy, flow control techniques and

Grouping techniques to provide improved performance in Hybrid Passive Optical Networks (PON) such as PON-xDSL, FiWi etc. Finally, we study the different types of

software defined algorithms in access networks and describe the various open challenges and research directions.
Date Created
2015
Agent

Design and performance analysis of fiber wireless networks

154049-Thumbnail Image.png
Description
A Fiber-Wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads

A Fiber-Wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads to higher wireless interference and longer packet delays. The partitioning of a large WMN into several smaller WMN clusters, whereby each cluster is served by an Optical Network Unit (ONU) of the PON, is examined. Existing WMN throughput-delay analysis techniques considering the mean load of the nodes at a given hop distance from a gateway (ONU) are unsuitable for the heterogeneous nodal traffic loads arising from clustering. A simple analytical queuing model that considers the individual node loads to accurately characterize the throughput-delay performance of a clustered FiWi network is introduced. The accuracy of the model is verified through extensive simulations. It is found that with sufficient PON bandwidth, clustering substantially improves the FiWi network throughput-delay performance by employing the model to examine the impact of the number of clusters on the network throughput-delay performance. Different traffic models and network designs are also studied to improve the FiWi network performance.
Date Created
2015
Agent

On code design for interference channels

154022-Thumbnail Image.png
Description
There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed.

Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.
Date Created
2015
Agent

Transitional Feedback Schedules During Computer-Based Problem-Solving Practice

129345-Thumbnail Image.png
Description

Feedback has a strong influence on effective learning from computer-based instruction. Prior research on feedback in computer-based instruction has mainly focused on static feedback schedules that employ the same feedback schedule throughout an instructional session. This study examined transitional feedback

Feedback has a strong influence on effective learning from computer-based instruction. Prior research on feedback in computer-based instruction has mainly focused on static feedback schedules that employ the same feedback schedule throughout an instructional session. This study examined transitional feedback schedules in computer-based multimedia instruction on procedural problem-solving in electrical circuit analysis. Specifically, we compared two transitional feedback schedules: the TFS-P schedule switched from initial feedback after each problem step to feedback after a complete problem at later learning states; the TFP-S schedule transitioned from feedback after a complete problem to feedback after each problem step. As control conditions, we also considered two static feedback schedules, namely providing feedback after each practice problem-solving step (SFS) or providing feedback after attempting a complete multi-step practice problem (SFP). Results indicate that the static stepwise (SFS) and transitional stepwise to problem (TFS-P) feedback produce higher problem solving near-transfer post-test performance than static problem (SFP) and transitional problem to step (TFP-S) feedback. Also, TFS-P resulted in higher ratings of program liking and feedback helpfulness than TFP-S. Overall, the study results indicate benefits of maintaining high feedback frequency (SFS) and reducing feedback frequency (TFS-P) compared to low feedback frequency (SFP) or increasing feedback frequency (TFP-S) as novice learners acquire engineering problem solving skills.

Date Created
2015-02-01
Agent

A cross-layer power analysis and profiling of wireless video sensor node platform applications

153132-Thumbnail Image.png
Description
Wireless video sensor networks has been examined and evaluated for wide range

of applications comprising of video surveillance, video tracking, computer vision, remote

live video and control. The reason behind importance of sensor nodes is its ease

of implementation, ability to operate in

Wireless video sensor networks has been examined and evaluated for wide range

of applications comprising of video surveillance, video tracking, computer vision, remote

live video and control. The reason behind importance of sensor nodes is its ease

of implementation, ability to operate in adverse environments, easy to troubleshoot,

repair and the high performance level. The biggest challenges with the architectural

design of wireless video sensor networks are power consumption, node failure,

throughput, durability and scalability. The whole project here is to create a gateway

node to integrate between "Internet of things" framework and wireless sensor network.

Our Flexi-Wireless Video Sensor Node Platform (WVSNP) is a low cost, low

power and compatible with traditional sensor network where the main focus was on

maximizing throughput or minimizing node deployment. My task here in this project

was to address the challenges of video power consumption for wireless video sensor

nodes. While addressing the challenges, I performed analysis of predicting the nodes

durability when it is battery operated and to choose appropriate design parameters.

I created a small optimized image to boot up Wandboard DUAL/QUAD board, capture

videos in small/big chunks from the board. The power analysis was performed

for only capturing scenarios, playback of reference videos and, live capturing and realtime

playing of videos on WVSNP player. Each sensor node in sensor network are

battery operated and runs without human intervention. Thus to predict nodes durability,

for dierent video size and format, I have collected power consumption results

and based on this I have provided some recommendation of HW/SW architecture.

i
Date Created
2014
Agent