Analysis of wireless video sensor network platforms over AJAX, CGI and WebRTC
Description
Since the inception of Internet of Things (IoT) framework, the amount of interaction between electronic devices has tremendously increased and the ease of implementing software between such devices has bettered. Such data exchange between devices, whether between Node to Server or Node to Node, has paved way for creating new business models. Wireless Video Sensor Network Platforms are being used to monitor and understand the surroundings better. Both hardware and software supporting such devices have become much smaller and yet stronger to enable these. Specifically, the invention of better software that enable Wireless data transfer have become more simpler and lightweight technologies such as HTML5 for video rendering, Common Gateway Interface(CGI) scripts enabling interactions between client and server and WebRTC from Google for peer to peer interactions. The role of web browsers in enabling these has been vastly increasing.
Although HTTP is the most reliable and consistent data transfer protocol for such interactions, the most important underlying challenge with such platforms is the performance based on power consumption and latency in data transfer.
In the scope of this thesis, two applications using CGI and WebRTC for data transfer over HTTP will be presented and the power consumption by the peripherals in transmitting the data and the possible implications for those will be discussed.
Although HTTP is the most reliable and consistent data transfer protocol for such interactions, the most important underlying challenge with such platforms is the performance based on power consumption and latency in data transfer.
In the scope of this thesis, two applications using CGI and WebRTC for data transfer over HTTP will be presented and the power consumption by the peripherals in transmitting the data and the possible implications for those will be discussed.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Agent
- Author (aut): Rentala, Sri Harsha
- Thesis advisor (ths): Reisslein, Martin
- Committee member: Kitchen, Jennifer
- Committee member: McGarry, Michael
- Publisher (pbl): Arizona State University