Immunogenic subviral particles displaying domain III of dengue 2 envelope protein vectored by measles virus
Description
Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and independently folding domain III (DIII) contains epitopes that elicit highly specific neutralizing antibodies. The hepatitis B small surface antigen (HBsAg, S) was used as a scaffold to display DENV 2 DIII on a virus-like particle (VLP). A measles virus (MV) was engineered to vector HBsAg and the hybrid glycoprotein DIII-HBsAg in two different loci (DIII-S). Despite the relatively deleterious effect on replication caused by the insertion of two transcription cassettes, the recombinant virus MVvac2(DIII-S,S)P induced the secretion of DIII-S hybrid VLP with a similar sucrose density as HBsAg particles (1.10-1.12g/ml) and peaked at 48 h post-infection producing 1.3x106 TCID50/ml infectious MV units in vitro. A second recombinant virus, MVvac2(DIII-S)N, was engineered to vector only the hybrid DIII-S. However, it did not induce the secretion of hybrid HBsAg particles in the supernatant of infected cells. The immunogenicity of the recombinant viruses was tested in a MV-susceptible small animal model, the experimental group which received two 105 TCID50 I.P. doses of MVvac2(DIII-S,S)P in a 28 day interval developed a robust immune response against MV (1:1280), HBsAg (787 mIU/ml) and DENV2 (Log10 neutralization index of 1.2) on average. In summary, it is possible to display DENV E DIII on hybrid HBsAg particles vectored by MV that elicit an immune response. This forms the basis for a potential vaccine platform against DENV.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Agent
- Author (aut): Harahap, Indira
- Thesis advisor (ths): Reyes del Valle, Jorge
- Thesis advisor (ths): Hogue, Brenda G
- Committee member: Lake, Douglas
- Committee member: Mason, Hugh
- Publisher (pbl): Arizona State University