Importance of cholesterol-rich membrane microdomains in measles virus

137763-Thumbnail Image.png
Description
Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a

Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a human pathogen, spread from cell to cell by inducing fusion of cellular membranes. This causes the formation of large multinucleated cells, syncytia. It has been previously reported that lipid microdomains are essential for measles virus infection/replication. In this study we used methyl beta cyclodextrin (MBCD), a cholesterol-sequestering agent to disrupt lipid microdomains. Through transfection of Vero h/SLAM cells, we found that Measles virus fusion was dependent on lipid microdomains integrity. Indeed, a dose dependent fusion inhibition was documented with increasing concentrations of MBCD resulting in reduced formation of syncytia.
Date Created
2013-05
Agent

Entrepreneurship Initiative at Westward Ho (DIY Bench)

Description
The goal is to develop a long term collaborative partnership that benefits the four main stakeholders: Arizona State University, The City of Phoenix, Westward Ho residents, and Westward Ho ownership. Arizona State University gains unique access to a research and

The goal is to develop a long term collaborative partnership that benefits the four main stakeholders: Arizona State University, The City of Phoenix, Westward Ho residents, and Westward Ho ownership. Arizona State University gains unique access to a research and learning environment for faculty and students of a variety of health disciplines. The City of Phoenix receives stability and safety to the neighborhood and protects the city's investment in the Westward Ho. The residents gain needed services through participation in ASU programs and initiatives. They acquire new life skills that contribute to their independence, thereby reducing the demand for costly emergency services and adding to their quality of life. The owners gain a more stable resident population and ASU's investment allows them to continue to upgrade the property, benefitting the city, the residents, and ASU.
Date Created
2013-05
Agent

CLONING AND EXPRESSION OF FLAVIVIRUS (YELLOW FEVER VIRUS AND DENGUE VIRUS) RECOMBINANT ENVELOPE PROTEINS IN E. COLI

137419-Thumbnail Image.png
Description
As research progresses in the field of vaccinology, momentum has been gained to develop an efficacious and efficient dengue virus (DV) vaccine for all four serotypes. Dengue viral outbreaks across the world have called for a vaccine campaign. However, due

As research progresses in the field of vaccinology, momentum has been gained to develop an efficacious and efficient dengue virus (DV) vaccine for all four serotypes. Dengue viral outbreaks across the world have called for a vaccine campaign. However, due to anti--"body dependent enhancement of infection, dengue virus has provided Researchers with challenges in developing a safe vaccine. Currently, there are a handful of vaccine candidates in clinical trial, but live chimeric attenuated vaccines dominate them. There are associated risks with using a live chimeric attenuated vaccine, but they are less expensive to generate and seem to provide a high immune response. Subunit vaccines are safer to use and can provide full protection for several years with then use of adjuvants and a booster shot. As a result, our lab is interested in pursuing this route to produce an effective dengue vaccine. The main target for a dengue subunit vaccine is the envelope protein, which is known to be an important recognition site by neutralizing antibodies. Therefore, expression of a recombinant envelope protein in a prokaryotic expression system is useful to study the immune response in vivo. This could be taken a step further and recombinant dengue envelope proteins can be expressed by a eukaryote to help generate hypotheses and insight to create a successful dengue virusn subunit vaccine.
Date Created
2013-05
Agent

Display of Domain III from Dengue 2 Envelope Protein on HBsAg Virus-like Particles Vectored by Measles Virus

136975-Thumbnail Image.png
Description
Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles

Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the dengue 2 E protein is too small to be immunogenic by itself. In order for it to be displayed on a larger particle, it was inserted into the amino terminus of small hepatitis B surface antigen (HBsAg, S) coding sequence. To generate the recombinant MV vector and verify the efficiency of this concept, a reverse genetics system was used where the MV vectors express one or two additional transcription units to direct the assembly of hybrid HBsAg particles. Two types of recombinant measles virus were produced: pB(+)MVvac2(DIII-S,S)P and pB(+)MVvac2(DIII-S)N. Virus recovered from pB(+)MVvac2(DIII-S,S)P was viable. An ELISA assay was performed to demonstrate the expression and secretion of HBsAg. Supernatant from MVvac2(DIII-S,S)P infected cells confirmed that hybrid HBsAg-domain III particles with a density similar to traditional HBsAg particles were released. Characteristics of the subviral particle have been analyzed for the successful incorporation of domain III. The replication fitness of the recombinant MV was evaluated using multi-step growth kinetics and showed reduced replication fitness when compared to the parental strain MVvac2. This demonstrates that viral replication is hindered by the addition of the two inserts into MV genome. Further analysis of MVvac2(DIII-S)N is needed to justify immune response studies in a small animal model using both of the generated recombinant vectors.
Date Created
2014-05
Agent

Expression of the measles virus proteome by RAPID ELISA for serological assays

136321-Thumbnail Image.png
Description
Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on

Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. These commercial assays measure reactivity against the immunodominant N antigen and can have a false negative rates of 20-30%. Centralized testing by clinical labs can delay rapid screening in an outbreak setting. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to five individual MV proteins representing 85% of the measles proteome. Methods: MV genes were subcloned into pANT_cGST vector to generate C-terminal GST fusion proteins. Single MV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured using a sandwich ELISA for GST expression using relative light units (RLUs) as readouts. Single MV antigens were used as bait to determine the IgG-dependent reactivity in 12 serum samples obtained from immunized animals with previously determined neutralization titer (NT) and the correlation between NT and ELISA reactivity was determined. Results: Protein expression of five measles genes of interest, M, N, F, H, and L, was measured. L exhibited the strongest protein expression with an average RLU value of 4.34 x 10^9. All proteins were expressed at least 50% greater than control (2.33 x 10^7 RLU). As expected, reactivity against the N was the highest, followed by reactivity against M, F, H and L. The best correlation with NT titer was reactivity against F (R^2 = 0.62). Conclusion: These data indicate that the expression of single MV genes M, N, F, H, and L are suitable antigens for serologic capture analysis of measles immunity.
Date Created
2015-05
Agent

Measles Virus Vectoring Hepatitis C Non-structural Protein 3: Towards a Hepatitis C Vaccine

136287-Thumbnail Image.png
Description
Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine

Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine has been notoriously difficult to produce. To overcome this, a vaccine using non-structural protein 3 (NS3) as a target to elicit a T cell specific immune response is thought to be a possible strategy for eliciting a protective immune response against hepatitis C infection. In this paper, a recombinant strain of measles virus (MV) that expresses HCV NS3 protein was analyzed. The replication fitness of this recombinant virus also indicates that this construct replicates at a higher rate than parental measles strain. It is also demonstrated through western blot analysis of protein expression and immunofluorescence that this recombinant virus expresses both the inserted HCV NS3 protein, as well as native measles proteins.
Date Created
2015-05
Agent

Dengue Vaccines: Strongly Sought But Not a Reality Just Yet

128053-Thumbnail Image.png
Description

Dengue virus (DV) infections cause undisputedly the most important arthropod-borne viral disease in terms of worldwide prevalence, human suffering, and cost. Worldwide DV infection prevalence in 2010 was between 284 to 528 million cases. Approximately 84% of these cases come

Dengue virus (DV) infections cause undisputedly the most important arthropod-borne viral disease in terms of worldwide prevalence, human suffering, and cost. Worldwide DV infection prevalence in 2010 was between 284 to 528 million cases. Approximately 84% of these cases come from Asia and the Americas, where the cost for emerging economies can be as high as 580 million dollars per year. Thus, the need for an efficient vaccine against DV is extreme.

Date Created
2013-10-03
Agent

Immunogenic Subviral Particles Displaying Domain III of Dengue 2 Envelope Protein Vectored by Measles Virus

128695-Thumbnail Image.png
Description

Vaccines against dengue virus (DV) are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII)

Vaccines against dengue virus (DV) are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII) from DV 2 envelope protein (E), which contains epitopes that elicits highly specific neutralizing antibodies. We modified the hepatitis B small surface antigen (HBsAg, S) in order to display DV 2 DIII on a virus-like particle (VLP), thus generating the hybrid antigen DIII-S. Two varieties of measles virus (MV) vectors were developed to express DIII-S. The first expresses the hybrid antigen from an additional transcription unit (ATU) and the second additionally expresses HBsAg from a separate ATU. We found that this second MV vectoring the hybrid VLPs displaying DIII-S on an unmodified HBsAg scaffold were immunogenic in MV-susceptible mice (HuCD46Ge-IFNar[superscript ko]), eliciting robust neutralizing responses (averages) against MV (1:1280 NT90), hepatitis B virus (787 mIU/mL), and DV2 (1:160 NT50) in all of the tested animals. Conversely, the MV vector expressing only DIII-S induced immunity against MV alone. In summary, DV2 neutralizing responses can be generated by displaying E DIII on a scaffold of HBsAg-based VLPs, vectored by MV.

Date Created
2015-07-03
Agent

Vaccination strategy to protect against flavivirus infection based on recombinant measles vaccine

155123-Thumbnail Image.png
Description
Despite the approval of a Dengue virus (DV) vaccine in five endemic countries, dengue prevention would benefit from an immunization strategy highly immunogenic in young infants and not curtailed by viral interference. Problematically, infants younger than 9 year of age,

Despite the approval of a Dengue virus (DV) vaccine in five endemic countries, dengue prevention would benefit from an immunization strategy highly immunogenic in young infants and not curtailed by viral interference. Problematically, infants younger than 9 year of age, whom are particularly prone to Dengue severe infection and death, cannot be immunized using current approved DV vaccine. The most important issues documented so far are the lack of efficiency and enhancement of the disease in young seronegative recipients, as well as uneven protection against the four DV serotypes. Based on data from clinical trials that showed enhanced performance of dengue vaccines when the host has previous anti-flaviviral immunity, I proposed here an attractive solution to complement the current vaccine: a recombinant measles vaccine vectoring dengue protective antigens to be administered to young infants. I hypothesized that recombinant measles virus expressing Dengue 2 and 4 antigens would successfully induce neutralizing responses against DV2 and 4 and the vaccine cocktail of this recombinant measles can prime anti-flaviviral neutralizing immunity. For this dissertation, I generated and performed preclinical immune assessment for four novel Measles-Dengue (MV-DV) vaccine candidates. I generated four MVs expressing the pre membrane (prM) and full length or truncated (90%) forms of the major envelope (E) from DV2 and DV4. Two virus, MVvac2-DV2(prME)N and MVvac2-DV4(prME), expressed high levels of membrane associated full-length E, while the other two viruses, MVvac2-DV2(prMEsol)N and MVvac2-DV4(prMEsol)N, expressed and secreted truncated, soluble E protein to its extracellular environment. The last two vectored vaccines proved superior anti-dengue neutralizing responses comparing to its corresponding full length vectors. Remarkably, when MVvac2-DV2/4(prMEsol)N recombinant vaccines were combined, the vaccine cocktail was able to prime cross-neutralizing responses against DV 1 and the relatively distant 17D yellow fever virus attenuated strain. Thus, I identify a promising DV vaccination strategy, MVvac2-DV2/4(prMEsol)N, which can prime broad neutralizing immune responses by using only two of the four available DV serotypes. The current MV immunization scheme can be advantageus to prime broad anti-flaviviral neutralizing immunity status, which will be majorly boosted by subsequent chimeric Dengue vaccine approaches.
Date Created
2016
Agent

A vaccine to close the window of opportunity for measles infection

154702-Thumbnail Image.png
Description
Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and

Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines. For this dissertation, I generated and performed preclinical evaluation of two novel MV vaccine candidates. Based on data from clinical trials that showed increasing the dosage of current MV vaccines improved antibody responses in six-month-old recipients, I hypothesized that increasing the relevant antigenic stimulus of a standard titer dose would allow safe and effective immunization at a younger age. I generated two modified MVs with increased expression of the hemagglutinin (H) protein, the most important viral antigen for inducing protective neutralizing immunity, in the background of a current vaccine-equivalent. One virus, MVvac2-H2, expressed higher levels of full-length H, resulting in a three-fold increase in H incorporation into virions, while the second, MVvac2-Hsol, expressed and secreted truncated, soluble H protein to its extracellular environment. The alteration to the virion envelope of MVvac2-H2 conferred upon that virus a measurable resistance to in vitro neutralization. In initial screening in adult mouse models of vaccination, both modified MVs proved more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic in the gold standard MV-susceptible mouse model. Remarkably, MVvac2-H2 better induced protective immunity in the presence of low levels of artificially introduced passive immunity that mimic the passive maternal immunity that currently limits vaccination of young infants, and that strongly inhibited responses to the current vaccine-equivalent. Finally, I developed a more physiological infant-like mouse model for MV vaccine testing, in which MV-susceptible dams vaccinated with the current vaccine-equivalent transfer passive immunity to their pups. This model will allow additional preclinical evaluation of the performance of MVvac2-H2 in pups of immune dams. Altogether, in this dissertation I identify a promising candidate, MVvac2-H2, for a next generation measles vaccine.
Date Created
2016
Agent