Optimization of a viral system to produce vaccines and other biopharmaceuticals in plants

156067-Thumbnail Image.png
Description
Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially

Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially turning plants into factories capable of producing virtually any gene. While genetically modified bacteria have historically been used for producing useful biopharmaceuticals like human insulin, plants can assemble much more complicated proteins, like human antibodies, that bacterial systems cannot. As plants do not harbor human pathogens, they are also safer alternatives than animal cell cultures. Additionally, plants can be grown very cheaply, in massive quantities.

In my research, I have studied the genetic mechanisms that underlie gene expression, in order to improve plant-based biopharmaceutical production. To do this, inspiration was drawn from naturally-occurring gene regulatory mechanisms, especially those from plant viruses, which have evolved mechanisms to co-opt the plant cellular machinery to produce high levels of viral proteins. By testing, modifying, and combining genetic elements from diverse sources, an optimized expression system has been developed that allows very rapid production of vaccine components, monoclonal antibodies, and other biopharmaceuticals. To improve target gene expression while maintaining the health and function of the plants, I identified, studied, and modified 5’ untranslated regions, combined gene terminators, and a nuclear matrix attachment region. The replication mechanisms of a plant geminivirus were also studied, which lead to additional strategies to produce more toxic biopharmaceutical proteins. Finally, the mechanisms employed by a geminivirus to spread between cells were investigated. It was demonstrated that these movement mechanisms can be functionally transplanted into a separate genus of geminivirus, allowing modified virus-based gene expression vectors to be spread between neighboring plant cells. Additionally, my work helps shed light on the basic genetic mechanisms employed by all living organisms to control gene expression.
Date Created
2017
Agent

Refining the structure of hPIRT, a modulator of TRP channels, via measurement of residual dipolar couplings in nuclear magnetic resonance spectroscopy

134498-Thumbnail Image.png
Description
Transient receptor potential channels (TRP channels) are a family of ion channels that mediate a wide variety of sensations, including pain, temperature, and mechanosensation. Human phosphoinositide-interacting regulator of TRP (hPIRT) is a 15.5 kDa, relatively uncharacterized membrane protein that has

Transient receptor potential channels (TRP channels) are a family of ion channels that mediate a wide variety of sensations, including pain, temperature, and mechanosensation. Human phosphoinositide-interacting regulator of TRP (hPIRT) is a 15.5 kDa, relatively uncharacterized membrane protein that has been shown to modulate the activity of certain TRP channels and some other ion channels. hPIRT is also able to interact with phosphatidylinositol-4,5-bisphosphate (PI(4,5)P¬2), a phospholipid that modulates the activity of many important signaling proteins, including TRP channels. Some information is already known about the structure of hPIRT: it contains a relatively unstructured N-terminus, two transmembrane helices, and a juxtamembrane region at the C-terminus that plays a role in binding PI(4,5)P2 and TRPV1. However, more detailed structural data about this molecule would be very informative in understanding how these interactions occur. In order to accomplish this, this thesis investigates the measurement of residual dipolar couplings (RDCs) in nuclear magnetic resonance spectroscopy (NMR) to refine the structure of hPIRT. RDCs are a measurable effect in NMR experiments caused by partial alignment of molecules solubilized in a weakly anisotropic medium. The resulting data set can be used to calculate bond angles within the protein relative to the axis of the external magnetic field, which will assist efforts to further constrain the structure of hPIRT.
Date Created
2017-05
Agent

Evaluation of target cell binding by an immunotherapeutic bispecific fusion protein, anti-CD3/chlorotoxin

Description
Engaging the immune system to attack neoplastic glial cells in the brain may be a promising approach to eliminate glioblastoma (GBM), a deadly form of primary brain cancer with low median survival. A bispecific fusion protein, anti-CD3/chlorotoxin (ACDClx), has been

Engaging the immune system to attack neoplastic glial cells in the brain may be a promising approach to eliminate glioblastoma (GBM), a deadly form of primary brain cancer with low median survival. A bispecific fusion protein, anti-CD3/chlorotoxin (ACDClx), has been developed to engage cytotoxic T cells for destruction against GBM with little to no expected toxicity to surrounding healthy tissue. Previously, ACDClx has been demonstrated to induce calcium flux in T cells, indicating activation when cultured with GBM cells in vitro. Here, ACDClx fails to demonstrate successful binding to the CD3 domain of the T-cell receptor on CD4 T cells in vitro and fails to bind GBM cells despite demonstrated binding of chlorotoxin to the same cell line. This data warrants further investigation into the binding characteristics of ACDClx to target cells.
Date Created
2017-05
Agent

Expression and Purification of Viral Like Particles for Vaccines and Structural Analysis

134223-Thumbnail Image.png
Description
Succinylcholine-induced apnea is a common problem in pre-hospital medicine that affects 1/1800 patients who undergo rapid sequence intubation. Succinylcholine is an anesthetic that mimics the neurotransmitter, acetylcholine. It binds to cholinergic receptors, blocking acetylcholine access, and causes paralysis for (normally)

Succinylcholine-induced apnea is a common problem in pre-hospital medicine that affects 1/1800 patients who undergo rapid sequence intubation. Succinylcholine is an anesthetic that mimics the neurotransmitter, acetylcholine. It binds to cholinergic receptors, blocking acetylcholine access, and causes paralysis for (normally) only a short time. Butyrylcholinesterase, which is responsible for succinylcholine hydrolysis, is deficient in a small percentage of the population. Previous studies have shown that wild-type butyrylcholinesterase (BChE) can be produced in transient-expression Nicotiana benthamiana, and can reverse the effects of succinylcholine induced apnea through enzyme replacement therapy. The wild type enzyme is also capable of irreversibly binding and inactivating organophosphorus nerve agents and pesticides, and has also exhibited cocaine hydrolase activity. Super cocaine-hydrolyzing BChE mutants, which exceed 2000 times the catalytic capability of the wild-type, have been optimized and expressed in N. benthamiana. The purpose of this study was to determine whether these mutants also hydrolyze succinylcholine with improved efficiency. Variant 3 and Variant 4 exhibited catalytic efficiencies of 2.08 x 106 M-1 min-1 and 3.48 x 106 M-1 min-1, respectively, against their preferred substrate, butyrylthiocholine, in the Ellman assay. The wild-type plant-expressed BChE did exhibit hydrolysis of succinylcholine, as we had previously determined; however, neither Variant 3 nor Variant 4 demonstrated the ability to hydrolyze succinylcholine in our particular assay. Therefore, N. benthamiana-expressed Variant 3 and Variant 4 may not succeed as a dual treatment against cocaine toxicity and prolonged succinylcholine-induces paralysis.
Date Created
2017-05
Agent

Importance of cholesterol-rich membrane microdomains in measles virus

137763-Thumbnail Image.png
Description
Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a

Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a human pathogen, spread from cell to cell by inducing fusion of cellular membranes. This causes the formation of large multinucleated cells, syncytia. It has been previously reported that lipid microdomains are essential for measles virus infection/replication. In this study we used methyl beta cyclodextrin (MBCD), a cholesterol-sequestering agent to disrupt lipid microdomains. Through transfection of Vero h/SLAM cells, we found that Measles virus fusion was dependent on lipid microdomains integrity. Indeed, a dose dependent fusion inhibition was documented with increasing concentrations of MBCD resulting in reduced formation of syncytia.
Date Created
2013-05
Agent

Effects of Nitrogen Deficiency on 74 Breeding Lettuce Lines Derived from the Cross Parade vs. Pavane under Different Illumination Conditions

137488-Thumbnail Image.png
Description
The manner in which plants are able to acquire plant nitrate (NO3-) varies depending on a combination of distinct processes between "root high-and low-affinity NO-3 transporters and the proton gradient that is generated by the plasma membrane H+-ATPase" (Paez-Valencia et

The manner in which plants are able to acquire plant nitrate (NO3-) varies depending on a combination of distinct processes between "root high-and low-affinity NO-3 transporters and the proton gradient that is generated by the plasma membrane H+-ATPase" (Paez-Valencia et al, 2013). In this study we analyzed the response to limiting nitrate (0.5 mM) of seventy-four breeding lettuce (Lactuca sativa) lines derived from the cross Parade vs. Pavane. Parade had an enhanced root acidification capacity when grown under Nitrate limitation in comparison to Pavane, which had a poor root acidification capacity. Two successive experiments were conducted under distinct environmental conditions to evaluate the performance of the different breeding lines based on their ability to grow under nitrogen limitation as an indirect measurement of their ability to take up nitrate. Specific parameters were established in order to properly classify strong and weak breading lines based on the following characterizations: 1) Average fresh shoots and roots weights; 2) Color of leaves (green vs. yellow); and 3) Root acidification capacity. In essence, the measurement of these parameters is would allow for the identification of breeding lines that demonstrated enhanced performance under Nitrate limitation in order to observe if their performance correlated with root acidification capacity. The breeding line's biomass, indicated by the average fresh shoots and roots weights, determined the plant's ability to uptake Nitrogen; whereas, large biomass values indicated Nitrogen uptake, low values indicated a low Nitrogen uptake (Javadiyan, 2008). To determine Nitrogen nutrition, the colors of the plants' leaves were observed throughout the duration of the study; a green color demonstrated appropriate Nitrogen nutrition, whereas as a yellow color identified Nitrogen deficiency (Yang, 2003). In addition to the nutrients that composed the media in the agar plates, a pH indicator (Bromocresol Purple Dye) was utilized to monitor root acidification; the purple indicator transformed into a yellow color upon the occurrence of acidification. In both experiments, a direct correlation between the root acidification capacity and the biomass of each breeding line could not be determined. Strong breeding lines were identified when they demonstrated large biomass measurements, which were obtained from the average fresh shoots and roots, and also a proper nitrogen nutrition status, which was shown through their green leaf phenotypic characteristics. These two characterizations were significantly prevalent in four breeding lines (B9, B17, C1, and C21), which on average outperformed the parental lines (Controls: P12 and P13).
Date Created
2013-05
Agent

Teaching Biology in a Maximum-Security Prison Unit: Feedback, Notes and Recommendations from a Pilot Class

136383-Thumbnail Image.png
Description
We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and

We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to enhance current programs at the unit by offering inmates an opportunity to practice literacy and math skills, while also providing exposure to a new academic field (science, and specifically biology). Numerous studies, including a 2005 study from the Arizona Department of Corrections (ADC), have found that vocational programs, including prison education programs, reduce recidivism rates (ADC 2005, Esperian 2010, Jancic 1988, Steurer et al. 2001, Ubic 2002) and may provide additional benefits such as engagement with a world outside the justice system (Duguid 1992), the opportunity for inmates to revise personal patterns of rejecting education that they may regret, and the ability of inmate parents to deliberately set a good example for their children (Hall and Killacky 2008). Teaching in a maximum security prison unit poses special challenges, which include a prohibition on most outside materials (except paper), severe restrictions on student-teacher and student-student interactions, and the inability to perform any lab exercises except limited computer simulations. Lack of literature discussing theoretical and practical aspects of teaching science in such environment has prompted us to conduct an ongoing study to generate notes and recommendations from this class through the use of surveys, academic evaluation of students' work and ongoing feedback from both teachers and students to inform teaching practices in future science classes in high-security prison units.
Date Created
2015-05
Agent

Is a putative plant-derived analog of the mammalian proline-rich attachment domain causing a human enzyme expressed in plants to undergo tetramerization?

136320-Thumbnail Image.png
Description
Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of

Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction. Recombinantly expressed BChE, however, tends to be in monomer or dimer oligomeric forms, which are far less stable than the tetramer form of the enzyme. When BChE is transiently expressed in Nicotiana benthamiana, it is produced mainly as monomers and dimers. However, when the protein is expressed through stable transformation, it produces much greater proportions of tetramers. Tetramerization of WT human plasma derived BChE is facilitated by the binding of a proline rich peptide. In this thesis, I investigated if a putative plant-derived analog of the mammalian proline-rich attachment domain caused stably expressed cocaine hydrolase variants of human BChE to undergo tetramerization. I also examined if co-expression of peptides with known proline-rich attachment domains further shifted the monomer-tetramer ratio toward the tetramer.
Date Created
2015-05
Agent

Importance of Cholesterol Depletion in Measles Virus Infection and Replication

136311-Thumbnail Image.png
Description
Lipid membranes are a key structure for many classes of viruses. Lipid membranes can be analyzed using the fluid mosaic model, which states that the phospholipid membrane has variable amounts of fluidity and key membrane proteins are presented in areas

Lipid membranes are a key structure for many classes of viruses. Lipid membranes can be analyzed using the fluid mosaic model, which states that the phospholipid membrane has variable amounts of fluidity and key membrane proteins are presented in areas stabilized by cholesterol-enriched platforms called lipid rafts. This project aims to further the understanding of the importance of lipid rafts in measles virus (MV) infection and replication, which has not been extensively studied. In order to do this, an MV-susceptible cell line was treated with an anti-cholesterol compound before and after measles virus infection. I found that pre-infection treatments had a marginal effect upon measles cytopathic effect (syncytia formation) or replication. Twenty-four hours post-infection treatment had a deleterious effect on cell viability, but the replication/assembly of infectious units per cell decreased importantly and in dose-dependent manner. Furthermore, by measuring the susceptibility to neutralization of infectious particles obtained from MBCD treated cells, I determined the importance of lipid microdomain environment on the stability of infectious particles. Increased anti-cholesterol treatment enhanced the susceptibility of MV to neutralization. Future studies are proposed to assess the properties of cholesterol depleted viral infectious units.
Date Created
2015-05
Agent

CHALLENGES IN THE EXPRESSION AND PURIFICATION OF INTERCELLULAR ADHESION MOLECULE- 1

136289-Thumbnail Image.png
Description
The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after

The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 is used as a receptor for various pathogens such as rhinoviruses, coxsackievirus A21 and the malaria parasite Plasmodium falciparum. ICAM-1 contains five immunoglobulin (Ig) domains in its long N-terminal extracellular region, a hydrophobic transmembrane domain, and a small C-terminal cytoplasmic domain. The Ig domains 1-2 and Ig domains 3-4-5 have been crystallized separately and their structure solved, however the full ICAM-1 structure has not been solved. Because ICAM-1 appears to be important for the mediation of cell-to-cell communication in physiological and pathological conditions, gaining a structural understanding of the full-length membrane anchored ICAM-1 is desirable. In this context, we have transiently expressed a plant-optimized gene encoding human ICAM-1 in Nicotiana benthamiana plants using the MagnICON expression system. The plant produced ICAM-1 is forming aggregates according to previous data. Thus, the current extraction and purification protocols have been altered to include TCEP, a reducing agent. The protein was purified using TALON metal affinity resin and partially characterized using various biochemical techniques. Our results show that there is a reduction in aggregation formation with the use of TCEP.
Date Created
2015-05
Agent