Evaluating the Ecosystem of the Lower Mekong Basin: Multi-scale Multi-sensor Geospatial Analytics

187739-Thumbnail Image.png
Description
Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to

Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to address the issues for a healthier planet. However, a systematic evaluation of recent environmental changes and current ecosystem status, focusing on terrestrial ecosystem carbon-water trade-off, in the Lower Mekong Basin (LMB) is lacking. This dissertation involves: (1) examining the long-term spatiotemporal patterns of ecosystem conditions in response to gains and losses of the forest; (2) evaluating the current consumptive water use variation across all biome and land use types with remotely sensed evapotranspiration (ET) products; (3) analyzing the trade-off between terrestrial carbon and water stress condition during the photosynthesis process in response to different climatic/ecosystem conditions, and (4) developing a spatial optimization model to effectively determine possible reforestation/afforestation options considering the balance between water conservation and carbon fluxes. These studies were conducted with many recently developed algorithms and satellite imagery. This dissertation makes significant contributions and expands the knowledge of the variation in water consumption and carbon assimilation within the ecosystem when different conditions are present. In addition, the spatial optimization model was applied to the entire region to formulate possible reforestation plans under different water-carbon tradeoff scenarios for the first time. The findings and results of this research can be used to provide constructive suggestions to policymakers, managers, planners, government officials, and any other stakeholders in LMB to formulate policies and guidelines for the environmentally responsible and sustainable development of LMB.
Date Created
2023
Agent

Mechanistic Insights into Dynamic Predictions of Pathogens in Engineered Systems

187564-Thumbnail Image.png
Description
Pathogens can proliferate in the built environment and can cause disease outbreaks if water and wastewater are not properly managed. Understanding pathogens that grow in engineered systems is crucial to protecting public health and preventing disease. Using dynamic computational models

Pathogens can proliferate in the built environment and can cause disease outbreaks if water and wastewater are not properly managed. Understanding pathogens that grow in engineered systems is crucial to protecting public health and preventing disease. Using dynamic computational models can reveal mechanistic insights into these systems to aid in understanding risk drivers and determining risk management strategies. The first research chapter of this thesis investigates tradeoffs for reducing the cost associated with Legionnaire’s Disease, hot water scalding, and energy use using a computational framework for evaluating an optimal water heater temperature set point. The model demonstrated that the optimal temperature set point was highly dependent on assumptions made regarding the dose response parameter for a common configuration of an electric water heater in a hospital setting. The optimal temperature was 55°C or 48°C for subclinical vs. clinical severity dose response, respectively, compared with current recommendations of 60°C to kill bacteria and 49°C to prevent scalding and conserve energy. The second research chapter models the population dynamics of antibiotic-susceptible Escherichia coli (E. coli) and antibiotic-resistant E. coli with a population ecology-exposure assessment model in surface water to quantify the risk of urinary tract infection from recreational swimming activities. Horizontal gene transfer (HGT) was modeled in the environment and the human gastrointestinal tract for several scenarios. HGT was generally not a dominant driver of exposure estimates compared to other factors such as growth and dilution, however, the rank order of factors was scenario-dependent. The final research chapter models pathogen transport from wastewater treatment plant (WWTP) exposures and assesses the risk to workers based on several exposure scenarios. Case studies were performed to investigate infection risk drivers across different scenarios, including adjustments for the timing of exposure and personal protective equipment. A web application was developed for use by WWTP risk managers to be used with site-specific data. The proposed modeling frameworks identified risk drivers across several microbial risk scenarios and provide flexible tools for risk managers to use when making water treatment and use decisions for water management plans used for premise plumbing as well as for wastewater treatment practices.
Date Created
2023
Agent

Defining a Roadmap Towards a More Sustainable Food-Energy-Water (FEW) Nexus in the Phoenix Metropolitan Region Through Integrated Modeling

171664-Thumbnail Image.png
Description
Quantifying the interactions among food, energy, and water (FEW) systems is crucial to support integrated policies for the nexus governance. Metropolitan areas are the main consumption and distribution centers of these three resources and, as urbanization continues, their role will

Quantifying the interactions among food, energy, and water (FEW) systems is crucial to support integrated policies for the nexus governance. Metropolitan areas are the main consumption and distribution centers of these three resources and, as urbanization continues, their role will become even more central. Despite this, the current understanding of FEW systems in metropolitan regions is limited. In this dissertation, the key factors leading to a more sustainable FEW system are identified in the metropolitan area of Phoenix, Arizona using the integrated WEAP-MABIA-LEAP platform. In this region, the FEW nexus is challenged by dramatic population growth, competition among increasing FEW demand, and limited water availability that could further decrease under climate change. First, it was shown that the WEAP platform allows the reliable simulations of water allocations from supply sources to demand sectors and that agriculture is a key stressor of the nexus, which will require additional groundwater (+83%) and energy (+15%) if cropland area is preserved over the next 50 years. Second, the climate change impacts on the food-water nexus were quantified by applying the WEAP-MABIA model with climate projections up to 2100 from 27 GCMs under different warming levels. It was found that the increases in temperature will lead to higher atmospheric evaporation demand that will, in turn, reduce crop production at a rate of -4.8% per decade. In the last part, the fully integrated WEAP-MABIA-LEAP platform was applied to investigate future scenarios of the FEW nexus in the metropolitan region. Several scenarios targeting each FEW sector were compared through sustainability indicators quantifying availability/consumption, reliability, and productivity of the three resources. Results showed that increasing renewable energy and changing cropping patterns will increase the FEW nexus sustainability compared to business-as-usual conditions. The findings of this dissertation, along with its analytical approach, support policy making towards integrated FEW governance and sustainable development.
Date Created
2022
Agent

Assessing Organic Farm Nutrient Management

171619-Thumbnail Image.png
Description
The United States Department of Agriculture provides requirements for a farm operation to become certified organic, but how do these regulations influence nutrient management on organic farms? There is insufficient evidence to show if the current regulations on nutrient sourcing

The United States Department of Agriculture provides requirements for a farm operation to become certified organic, but how do these regulations influence nutrient management on organic farms? There is insufficient evidence to show if the current regulations on nutrient sourcing and application are feasible and effective. An online survey was administered to owners and operators of organic farms. Survey respondents were offered a free soil test as an incentive to participate and to compare their practices and soil quality. Assessing the current nutrient management under organic regulations provides information to help assess the sustainability of their nutrient management practices. Early data suggest that organic farmers may most often be overapplying and creating legacy sources with this key resource.
Date Created
2022
Agent

Exploring Intensive Agriculture and Organic Fertilizer Management in the US: Implications for Nutrient Pollution Prevention

168288-Thumbnail Image.png
Description
Intensified food production on large farms across the world has led to discussions on how to facilitate sustainable policies and practices to reduce nutrient pollution. In Chapter 1, I evaluated the co-variability of agricultural intensification, environmental degradation, and socio-economic indicators

Intensified food production on large farms across the world has led to discussions on how to facilitate sustainable policies and practices to reduce nutrient pollution. In Chapter 1, I evaluated the co-variability of agricultural intensification, environmental degradation, and socio-economic indicators throughout the US to explore the potential evidence for the existence of sustainable intensification of agriculture in the US. I identified distinct agro-social-eco regions in the US that provide background for future regional studies of (sustainable intensification) SI in the US and beyond. I observed regions of moderate agricultural intensity and lower environmental degradation within the Great Plains, and regions of high agricultural intensity and higher environmental degradation throughout portions of the Midwest. Insights gained from this study can provide roadmaps for improved sustainable agricultural intensification within the US. In Chapter 2, the study summarized state regulations controlling a key nutrient input - the land application of biosolids from human wastewater treatment and manures from regulated animal feeding operations. Results indicate high variability of both manure and biosolids regulations among the states and stark differences in the regulation of land application of biosolids versus manures. This work can be used to identify opportunities for the strengthening of regulatory frameworks for managing these resources with minimal risk to the environment. In Chapter 3, I combined aspects of the previous chapters to understand the potential impact of specific CAFO land application regulations on nutrient pollution and assess if stricter regulations related to better environmental outcomes. I compared TN AND TP accumulated yields in surface waters across US States with state specific CAFO land application regulations across US Policy scenario tests revealed that more restrictions were associated with higher nutrient levels, indicating reactive policy making and delayed nonpoint source pollution responses. Overall, I found that fostering adaptive capacity and management within delineated agro-social-eco regions will likely facilitate sustainable food systems in the US.
Date Created
2021
Agent

Comparative Exposure Assessment of Antibiotic Resistance Determinants in Biosolids in Fertilizer Application to Lettuce Crops

165168-Thumbnail Image.png
Description
Water is a scarce resource that is recycled through wastewater treatment plants (WWTPs) to help fulfill the demand for water. Agriculture is a large consumer of water, indicating that WWTP-treated water is proportionally applied to crops at a high rate.

Water is a scarce resource that is recycled through wastewater treatment plants (WWTPs) to help fulfill the demand for water. Agriculture is a large consumer of water, indicating that WWTP-treated water is proportionally applied to crops at a high rate. Recycled water is highly regulated but is capable of containing high-risk pathogens and contaminants despite the efforts of physical and microbial treatments throughout the WWTP process. WWTPs are also producers of biosolids, treated sewage sludge regulated by the EPA that can be applied in agricultural settings to act as a fertilizer. Biosolids are a useful fertilizer as they are rich in nitrogen and contain many beneficial nutrients for soil and crops. Due to biosolids being a by-product of recycled water, they are susceptible to containing the same pathogens and contaminants that can be transferred in the WWTP systems. Antibiotic resistance (AR) is an ever-growing threat on a global scale and is one of the areas of concern for consideration of pathogen spread from WWTPs. Antibiotic resistance bacteria, created through mutation of bacterial plasmids producing antibiotic resistance genes (ARGs), have been quantified and studied to help mitigate the risk posed by continued AR spread in the environment. This study aims to produce a comprehensive collection of quantified ARG concentration data in biosolids, as well as producing a QMRA model integrating Monte Carlo distributions to provide groundwork for understanding of the direct dosage and consumption of ARGs to the standard U.S. citizen. The study determined that sul1, sul2, tetM, and tetO are ARGs of high concern in biosolid samples based on current concentration data of biosolid samples. The resulting dose models and gene concentration distributions provide data to support the need to mitigate AR risk presented by agricultural biosolid application.
Date Created
2022-05
Agent

Hydrologic and Water Quality Modeling of a CAFO Dairy Lagoon

161609-Thumbnail Image.png
Description
In recent decades animal agriculture in the U.S. has moved from small, distributed operations to large, Concentrated Animal Feeding Operations (CAFOs). CAFOs are defined by federal regulations based on animal numbers and confinement criteria. Because of the size of these

In recent decades animal agriculture in the U.S. has moved from small, distributed operations to large, Concentrated Animal Feeding Operations (CAFOs). CAFOs are defined by federal regulations based on animal numbers and confinement criteria. Because of the size of these operations, the excessive amount of manure generated is typically stored in lagoons, pits, or barns prior to field application or transport to other farms. Water quality near CAFOs can be impaired through the overflow of lagoons, storm runoff, or lagoon seepage. Assessing water quality impacts of CAFOs in a modeling framework has been difficult because of data paucity. A CAFO lagoon module was developed to assess lagoon overflow risk, groundwater quality, and ammonia emissions of a dairy lagoon. A groundwater quality assessment of a Dairy Lagoon in Lynden Washington was used to calibrate and validate the groundwater quality model. Groundwater down stream of the lagoon was negatively impaired. The long-term effects of this lagoon on water quality were explored as well as the effectiveness of improving the lagoon lining to reduce seepage. This model can be used to improve understanding of the impacts of CAFO lagoon seepage and develop sustainable management practices at the watershed scale for these key components of the agricultural landscape.
Date Created
2021
Agent

Assessing Urban Agricultural Practices in Desert Cities

148085-Thumbnail Image.png
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

Date Created
2021-05
Agent

Predicting De Facto Reuse Impacts on Drinking Water Sources at Small Public Water Systems

158899-Thumbnail Image.png
Description
De facto potable reuse (DFR) occurs when surface water sources at drinking water treatment plants (DWTPs) contain treated effluents from upstream wastewater treatment plants (WWTPs). Contaminants of emerging concerns (CECs) originate from treated effluents (e.g., unregulated disinfection by-products, pathogenic microorganisms

De facto potable reuse (DFR) occurs when surface water sources at drinking water treatment plants (DWTPs) contain treated effluents from upstream wastewater treatment plants (WWTPs). Contaminants of emerging concerns (CECs) originate from treated effluents (e.g., unregulated disinfection by-products, pathogenic microorganisms as Cryptosporidium oocyst, Giardia cyst, and Norovirus) can be present in surface water and pose human health risks linked to CECs. Previously developed De facto Reuse Incidence in our Nations Consumable Supply (DRINCS) model predicted DFR for the national largest DWTPs that serve >10,000 people (N = 2,056 SW intakes at 1,210 DWTPs). The dissertation aims to quantify DFR at all surface water intakes for smaller DWTPs serving ≤10,000 people across the United States and develop a programmed ArcGIS tool for proximity analysis between upstream WWTPs and DWTPs. The tested hypothesis is whether DWTPs serving ≤10,000 people are more likely to be impacted by DFR than larger systems serving > 10,000 people.The original DRINCS model was expanded to include all smaller DWTPs (N = 6,045 SW intakes at 3,984 DWTPs) in the U.S. First, results for Texas predicted that two-thirds of all SW intakes were impacted by at least one WWTP upstream. The level of DFR at SW intakes in Texas ranged between 1% to 20% under average flow and exceeded 90% during mild droughts. Smaller DWTPs in Texas had a higher frequency of DFR than larger systems while < 10% of these DWTPs employed advanced technology (AT) capable of removing CECs. Second, nationally over 40% of surface water intakes at all DWTPs were impacted by DFR under average flow (2,917 of 6,826). Smaller DWTPs had a higher frequency (1,504 and 1,413, respectively) of being impacted by upstream WWTP discharges than larger DWTPs. Third, the difference in DFR levels at smaller versus larger DWTPs was statistically unclear (t-test, p = 0.274). Smaller communities could have high risks to CECs as they rely on surface water from lower-order streams impacted by DFR. Furthermore, smaller DWTPs lack more than twice as advanced unit processes as larger DWTPs with 52.1% and 23%, respectively. DFR levels for DWTPs serving > 10,000 people were statistically higher on mid-size order streams (3, 5, and 8) than those for smaller DWTPs. Finally, DWTPs serving > 10,000 people could pose risks to a population impacted by DFR > 1% as 40 times as those served by smaller DWTPs with 71 million and 1.7 million people, respectively. The total exposed population to risks of CECs served by DWTPs impacted by upstream WWTP discharges (DFR >10%) was estimated at 12.3 million people in the United States. Future studies can use DRINCS results to conduct an epidemiological risk assessment for impacted communities and identify communities that would benefit from advanced technology to remove CECs.
Date Created
2020
Agent

Review of the Quantitative Tradeoffs of Using Organic Residuals in Arid Agriculture

158705-Thumbnail Image.png
Description
Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture

Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture accounts for approximately 70% of all freshwater withdrawals globally. This essential sector of society therefore plays an important role in ensuring water sources are maintained and that the food system can remain resilient to dwindling water resources. The purpose of this research is to quantify the benefits of organic residuals and reclaimed water use in agriculture in arid environments through the development of a systematic review and case study. Data from the systematic review was extracted to be applied to a case study identifying the viability and benefits of organic residuals on arid agriculture. Results show that the organic residuals investigated do have quantitative benefits to agriculture such as improving soil health, reducing the need for conventional fertilizers, and reducing irrigation needs from freshwater sources. Some studies found reclaimed water sources to be of better quality than local freshwater sources due to environmental factors. Biosolids and manure are the most concentrated of the organic residuals, providing nutrient inputs and enhancing long-term soil health. A conceptual model is presented to demonstrate the quantitative benefits of using a reclaimed water source in Pinal County, Arizona on a hypothetical crop of cotton. A goal of the model is to take implied nutrient inputs from reclaimed water sources and quantify them against standard practice of using irrigated groundwater and conventional fertilizers on agricultural operations. Pinal County is an important case study area where farmers are facing cuts to their water resources amid a prolonged drought in the Colorado River Basin. The model shows that a reclaimed water source would be able to offset all freshwater and conventional fertilizer use, but salinity in reclaimed water sources would force a need for additional irrigation in the form of a large leaching fraction. This review combined with the case study demonstrate the potential for nutrient and water reuse, while highlighting potential barriers to address.
Date Created
2020
Agent